Combinatorics, external rays, and twisted polynomials.

Wolf Jung, Gesamtschule Aachen-Brand, Aachen, Germany.

- 1. Background.
- 2. The Stripping Algorithm.
- 3. Early returns.
- 4. Non-admissible combinatorics.
- 5. The proof.
- 6. Recapture of the critical point.

The images were made with Mandel, a program available from www.mndynamics.com.

Talk given at the conference on dynamical systems in Göttingen, August 2011.

1. Background:

Iteration of $f_c(z) = z^2 + c$.

Filled Julia set $\mathcal{K}_c = \{z \in \mathbb{C} \mid f_c^n(z) \not\to \infty\}$.

Mandelbrot set $\mathcal{M} = \{c \in \mathbb{C} \mid c \in \mathcal{K}_c\}$.

Main tool: External rays with rational angles. Defined by conformal mappings $\Phi_c : \widehat{\mathbb{C}} \setminus \mathcal{K}_c \to \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}$ and $\Phi_M : \widehat{\mathbb{C}} \setminus \mathcal{M} \to \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}$.

Applications include: description of points and subsets; topological models.

Other combinatorial concepts: Hubbard trees, kneading sequences, and internal addresses.

1.1 External rays

Polynomial $f_c(z)$ corresponds to angle doubling modulo 1. Symbolic dynamics of binary digits.

Landing of dynamic rays with rational angle θ :

Odd denominator — periodic digits — landing at periodic point.

Even denominator — preperiodic digits — landing at preperiodic point.

Landing pattern is stable except for bifurcations; Mandel demo 3, p. 5, 6, 10. Parameter rays are landing at roots and Misiurewicz points.

1.2 Hubbard tree

Postcritically finite polynomial f_c ; here 5-periodic.

Concrete Hubbard tree: connect postcritical points (and 0) by arcs within \mathcal{K}_c . Oriented Hubbard tree: considered as a planar graph.

There are two components A and B at the critical point z = 0. Equivalently: the critical value z = c is an endpoint.

1.3 Kneading sequence

Symbolic dynamics of sequence $\overline{AABA*}$.

j-th symbol says whether $f_c^{j-1}(c)$ is in A, in B, or = 0.

Or for angle θ : A corresponds to $2^{j-1}\theta \in (\frac{\theta}{2}, \frac{\theta+1}{2}) \dots$

Both characteristic angles, here $\theta_{-} = \frac{5}{31}$ and $\theta_{+} = \frac{6}{31}$, give the same kneading sequence: the yellow strip is forbidden.

1.4 Internal address

The internal address is describing a kneading sequence by increasing periods. These correspond to hyperbolic components in \mathcal{M} , where the kneading sequence is changing.

Example: $\overline{AABA*}$ is obtained by changing $\overline{A} \rightarrow \overline{AAB} \rightarrow \overline{AABA*}$, so the internal address is 1-3-5.

Conversely, the internal address 1-3-5 gives $\overline{A} \rightarrow \overline{AAB} \rightarrow \overline{AABA*}$.

Further applications of internal addresses and kneading sequences include:

A combinatorial proof that periodic parameter rays are landing in pairs at roots (Schleicher).

Homeomorphisms between sublimbs (Dudko-Schleicher).

1.5 Concrete and abstract combinatorial concepts

hyp. component, center, root \rightarrow $\left\{ \begin{array}{c} \text{finite internal address} \\ *-periodic kneading sequence \\ abstract Hubbard tree \end{array} \right\}$

The mapping is not injective: the same addresses are realized in sublimbs of equal denominators.

The mapping is not surjective: an internal address may be non-admissible.

1.6 Conversion algorithms:

Several algorithms for conversions between different combinatorial descriptions are given by Bruin and Schleicher.

The algorithms converting an internal address or kneading sequence to external angles are quite involved: growing of trees or constructing the Hubbard tree first.

2. The Stripping Algorithm:

For a given kneading sequence and (angled) internal address, the characteristic angles shall be computed.

This is done recursively for all periods in the internal address.

In the step from 1-...-k to 1-...-k-n, suppose that the center \hat{c} of period n belongs to the p/q-sublimb of the center c_0 of period k. Then the angles of period qk are determined from those of period k by Douady tuning.

If n < qk, \hat{c} will be behind the satellite component. Its angles are computed by iterating backwards.

2.1 Example of 1-3-5 or $\overline{AABA*}$ with strips:

1-3 has the angles $\frac{1}{7}$ and $\frac{2}{7}$. Now q = 2, and 1-3-6 has angles $\frac{10}{63}$ and $\frac{17}{63}$.

Compare the dynamics of c with period 6 to that of \hat{c} with period 5: 5-periodic rays of \hat{c} are not yet landing together for c. 6-periodic rays of c are still landing together for \hat{c} . Preimages of 6-periodic rays define stable strips in both planes. They are chosen according to the kneading sequence of \hat{c} . U_1 gives $\frac{5}{31}$ and $\frac{6}{31}$.

2.2 The Stripping Algorithm with strips:

For the step from 1-...-k to 1-...-k-n, start with the center c and the angles θ_\pm of period qk .

- 0. The wake W is bounded by the external rays for θ_{\pm} .
- 1. Consider the strip $U_n = f_c^{-1}(W)$. Set $\mathbb{C} \setminus \overline{U_n} = A \cup B$.
- 2. For j = n 1 down to j = 1, first check if $U_{j+1} \subset W$. Then the algorithm will be branching. W is replaced with subsets of $W \setminus \overline{U_{j+1}}$.
- 3. For j = n 1 down to j = 1, then choose a component of $f_c^{-1}(U_{j+1})$ for U_j according to the kneading sequence of 1-...-k-n.
- 4. A branch is failing, if $U_1 \not\subset W$. Otherwise the unique *n*-periodic rays with angles Θ_{\pm} are recorded.

2.3 The Stripping Algorithm with angles:

For the step from 1-...-k to 1-...-k-n, start with the center c and the angles θ_{\pm} of period qk.

0. The wake W corresponds to the interval (θ_{-}, θ_{+}) .

- 1. In step n, compute the four angles $\Theta_1 = \theta_-/2$, $\Theta_2 = \theta_+/2$, $\Theta_3 = (\theta_- + 1)/2$, and $\Theta_4 = (\theta_+ + 1)/2$.
- 2. In steps j = n 1 down to j = 1, first check if $\theta_{-} < \Theta_1 < \theta_{+}$. Then the algorithm is branching: (θ_{-}, θ_{+}) is replaced with $(\theta_{-}, \min\{\Theta_1, \Theta_3\})$ in one branch and with $(\max\{\Theta_2, \Theta_4\}, \theta_{+})$ in the other branch.
- In steps j = n − 1 down to j = 1, then compute preimages. Case A: Θ_i is replaced with (Θ_i+1)/2 if 0 < Θ_i < θ_− and with Θ_i/2 if θ₊ < Θ_i < 1. It is vice versa in case B.
- 4. The branch is not failing if $\theta_{-} < \Theta_{1} < \theta_{+}$. Then there are two unique *n*-periodic angles Θ_{\pm} with $\Theta_{1} < \Theta_{\mp} < \Theta_{2}$ and $\Theta_{3} < \Theta_{\pm} < \Theta_{4}$.

2.4 Example of 1-3-5 or $\overline{AABA*}$ with angles:

$\left(\frac{10}{63},\frac{17}{63} ight)$	W	$\left[\frac{5}{31},\frac{8}{31} ight]$
$\left(\frac{5}{63}, \frac{17}{126}\right) \cup \left(\frac{73}{126}, \frac{40}{63}\right)$	U_5	$\left[\frac{3}{31}, \frac{4}{31}\right] \cup \left[\frac{18}{31}, \frac{19}{31}\right]$
$\left(\frac{34}{63},\frac{143}{252}\right)\cup\left(\frac{73}{252},\frac{20}{63}\right)$	U_4	$\left[\frac{17}{31}, \frac{17}{31}\right] \cup \left[\frac{9}{31}, \frac{9}{31}\right]$
$\left(\frac{97}{126},\frac{395}{504}\right)\cup\left(\frac{325}{504},\frac{83}{126}\right)$	U_3	$\left[\frac{24}{31}, \frac{24}{31}\right] \cup \left[\frac{20}{31}, \frac{20}{31}\right]$
$\left(\frac{97}{252} , \frac{395}{1008}\right) \cup \left(\frac{325}{1008} , \frac{83}{252}\right)$	U_2	$\left[\frac{12}{31}, \frac{12}{31}\right] \cup \left[\frac{10}{31}, \frac{10}{31}\right]$
$\left[\left(\frac{97}{504},\frac{395}{2016}\right)\cup\left(\frac{325}{2016},\frac{83}{504}\right)\right]$	U_1	$\left[\frac{6}{31}, \frac{6}{31}\right] \cup \left[\frac{5}{31}, \frac{5}{31}\right]$

The intervals of U_1 are approximately $(\frac{5.97}{31}, \frac{6.07}{31}) \cup (\frac{4.998}{31}, \frac{5.11}{31})$, determining unique angles $\Theta_+ = \frac{6}{31}$ and $\Theta_- = \frac{5}{31}$ of period 5.

In the third column, only 5-periodic angles are used, rounded to the interior of the intervals when necessary.

3. Early returns

The first example is given by 1-2-6-7-13-14 or $\overline{ABABAABABABABA}$. Here $U_{10} \subset W$, so its preimages belong to U_{14} instead of A and B.

The Stripping Algorithm is branching to try both strips possible for U_9 . The first branch is failing with the angles $\frac{6443}{16383}$ and $\frac{6444}{16383}$; the second branch is succeeding with the angles $\frac{6347}{16383}$ and $\frac{6348}{16383}$.

This phenomenon requires much consideration in the algorithm and the proof.

3.1 Oriented Hubbard trees; the correct branch with the angles $\frac{6347}{16383}$ and $\frac{6348}{16383}$, and the failing branch:

3.2 Oriented Hubbard trees; the failing branch and a similar Hubbard tree for a different center. It has the external angles $\frac{6443}{16383}$ and $\frac{6444}{16383}$. In the kneading sequence, there is an A instead of a B at the position of c_9 :

4. The non-admissible example of 1-2-4-5-6 or $\overline{ABAAB*}$ 1 2 3 5 6

This combinatorics is not admissible: there is no oriented Hubbard tree, external angle, or quadratic polynomial realizing these combinatorics.

Left: the Stripping Algorithm has an early return $U_4 \subset W$. Both branches are failing, since U_1 turns up on the wrong side of $W \setminus \overline{U_4}$.

Right: the abstract Hubbard tree has a 3-periodic evil branch point.

5. The proof of the Stripping Algorithm shows: 1 2 3 4 6

1. Iterating the strips U_j backwards is well-defined, since $c \notin U_{j+1}$. No strip is linked with the (possibly reduced) wake W.

2. If the algorithm does not branch, or if a branch does not fail, U_1 determines the desired characteristic angles of period n. Any other branch will be failing. The address $1-\ldots-k-n$ is realized.

3. If the algorithm is branching and all branches are failing, the address $1-\ldots-k-n$ will not be realized by a quadratic polynomial.

5.1 Pulling back is well-defined:

Show that no strip is containing c. Strips are disjoint or nested.

If there are several early returns, the earlier ones will not be before later ones; therefore they will not be linked with a reduced wake.

5.2 Non-failing branch gives correct angles:

In any case, comparing itineraries shows that $U_1 \subset W_0$ (original wake). So there are angles of period dividing n.

Forward iterates of rays are contained in the strips U_j . So the kneading sequence is the required one. In the case of an early return, note the components besides $f_c^{-1}(W) \subset U_n$ defining the kneading sequence. If the branch is not failing, the strips will be on the correct side.

5.3 Admissible address gives non-failing branch:

Show that the strips U_j , defined originally for c, do not bifurcate for parameters between c and \hat{c} .

This is obvious when there is no early return, since a dynamic ray is bifurcating only when the critical value belongs to an image of this ray.

If there are early returns, there will be a unique branch point y between c and z_1 , which corresponds to a Misiurewicz point a between c and \hat{c} . All possible image rays belong to other branches of y or a, respectively.

6. Recapture of the critical point:

Recall the example of the center \hat{c} of period 5 behind the center c of period 6: in the latter plane, the preimages $z_j \in U_j$ represent the critical orbit of $f_{\hat{c}}$, except that $f_c(0) = c$ so $f_c(0) \neq z_1$.

Connecting z_1, \ldots, z_5 by a tree $T \subset \mathcal{K}_c$ gives the oriented Hubbard tree of $f_{\widehat{c}}$, but the mapping $f: T \to T$ is not the restriction of f_c : it must be modified in a neighborhood of 0.

In fact this modification turns f_c into a topological polynomial g, which will be Thurston equivalent to $f_{\hat{c}}$.

6.1 Recapture using Thurston Theorem

Dfn: Consider $f_c(z) = z^2 + c$, and a preimage $z_1 \neq c$ of 0, such that z_1 , $z_2 = f_c(z_1)$, ..., $z_n = f_c^{n-1}(z_1) = 0$ are distinct. Set $\mathcal{P} = \{z_1, z_2, \ldots, z_n, \infty\}$. Suppose γ is an arc from c to z_1 , which is disjoint from $\mathcal{P} \setminus \{z_1\}$. **Recapture** along γ gives a center \hat{c} of period n as follows:

- 1. Choose a disk neighborhood Δ of γ disjoint from $\mathcal{P} \setminus \{z_1\}$.
- 2. Choose a homeomorphism $\phi: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ with $\phi(c) = z_1$, which is the identity on $\widehat{\mathbb{C}} \setminus \Delta$.

3. The topological polynomial $g=\phi\circ f_c$ is combinatorially equivalent to a unique $f_{\widehat{c}}$.

Construction is similar to Wittner capture and Timorin regluing. Based on

Thm.: (Thurston, Levy) A topological quadratic polynomial with periodic critical point is combinatorially equivalent to a unique polynomial.

6.2 Combinatorics and recapture

Thm.: Suppose \hat{c} has the internal address $1 - \ldots -k - n$ and c is the center of period qk before it, bifurcating from $1 - \ldots -k$. If q = 2, c may be the center of period k as well. Recall the preimages of 0, $z_j \in U_j$ with $f_c^{n-j}(z_j) = 0$.

The arc γ from c to z_1 shall be homotopic to an arc disjoint from U_j for j = 2, ..., n. Then \hat{c} is obtained from c by recapture along γ .

Proof: Choose $\Delta \subset W$ disjoint from U_j , $1 < j \leq n$, and $g = \phi \circ f_c$. Then $g = f_c : U_j \to U_{j+1}$ for $1 \leq j < n$. In $g^{-1}(U_1) \subset U_n$, choose an extended ray homotopic to its preimage. The quadratic polynomial equivalent to g will have extended rays with the same cyclic order landing on the critical orbit.

6.3 Recapture with early return

Recall the example of 1-2-6-7-13-14 with the early return $U_{10} \subset W$. Work in the dynamic plane of f_c with period 13 or 26.

If γ goes from c to z_1 directly, $g = \phi_0 \circ f_c$ will be equivalent to $f_{\widehat{c}}$ for the center \widehat{c} with the correct internal address and the external angles $\frac{6347}{16383}$ and $\frac{6348}{16383}$. If γ turns once around z_{10} , $g = \phi_1 \circ f_c$ will be equivalent to $f_{c'}$, where the center c' has the internal address 1-2-6-7-9-14 and the external angles $\frac{6443}{16383}$ and $\frac{6444}{16383}$.

6.4 More general curves:

Again, consider \hat{c} with the address 1-2-6-7-13-14, c' with 1-2-6-7-9-14, and c with 1-2-6-7-13 or 1-2-6-7-13-26 before them.

Let $\gamma_m \subset W$ be an arc from c to z_1 turning m times around z_{10} . Then $g = \phi_m \circ f_c$ will be equivalent to $f_{\hat{c}}$ or to $f_{c'}$ depending on m.

Now $\phi_m \circ \phi_0^{-1}$ is isotopic to D^{-m} for a Dehn twist D about z_1 and z_{10} . Consider a Dehn twist \widehat{D} about c_1 and c_{10} . Then $\widehat{D}^m \circ f_{\widehat{c}}$ will be equivalent to $f_{\widehat{c}}$ or to $f_{c'}$, respectively.

Compare this to the . . .

6.5 Twisted Rabbit

Bartholdi–Nekrashevych have solved the Twisted Rabbit problem: f_c is the Rabbit polynomial and D is a Dehn twist about c_1 and c_2 . Now consider $g = D^m \circ f_c$. Is it equivalent to the Airplane, the Rabbit, or its conjugate? All three types are realized for $m \in \mathbb{Z}$.

The images show that $g = D \circ f_c$ is equivalent to the Airplane, since the curves representing extended rays are homotopic to their preimages; the circular order determines the polynomial.

