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Abstract

Consider the iteration of complex quadratic polynomials fc(z) = z2 +c. The filled-in Julia
set Kc contains all z ∈ C with a bounded orbit. The Mandelbrot set M consists of those
parameters c ∈ C, such that Kc is connected. Quasi-conformal surgery in the dynamic
plane is employed to obtain homeomorphisms h : EM → ẼM between subsets of M. We
give a general construction of h under the additional assumption that EM = ẼM . Then
h has a countable family of mutually homeomorphic fundamental domains. Moreover, it
extends to a homeomorphism of C, which is quasi-conformal in the exterior of M. The
homeomorphisms h : EM → EM considered here fall into two categories: homeomorphisms
on edges and homeomorphisms at Misiurewicz points.

Edges EM ⊂ M are constructed combinatorially. For a large class of edges EM , there
is an associated homeomorphism h : EM → EM . Many edges consist of homeomorphic
building blocks which are called frames. Here we employ families of homeomorphisms,
since the frames are finer than the fundamental domains of a single homeomorphism. If a
homeomorphism h is fixing a Misiurewicz point a, then h or h−1 will be expanding there,
thus defining repelling dynamics in the parameter plane. Mappings with this property
are constructed for all α-type and β-type Misiurewicz points, and the relation to the well-
known asymptotic self-similarity of M at a is discussed. Moreover, a family of similarities
on different scales is obtained.

Zusammenfassung

Die ausgefüllte Juliamenge Kc ist über die Iteration komplexer quadratischer Polynome
der Form fc(z) = z2 + c definiert: z ∈ C gehört zu Kc , wenn der Orbit von z

beschränkt ist. Die Mandelbrotmenge M enthält die Parameter c ∈ C, für die Kc

zusammenhängend ist. Mittels quasikonformer Chirurgie in der Dynamik erhält man
Homöomorphismen h : EM → ẼM zwischen Teilmengen von M. Wir geben eine allgemeine
Konstruktion unter der zusätzlichen Voraussetzung EM = ẼM . Dann hat h eine abzählbare
Familie homömorpher Fundamentalbereiche und setzt sich zu einem Homöomorphismus
von C fort, der im Äußeren von M quasikonform ist. Wir betrachten zwei Typen
von Homöomorphismen h : EM → EM : Homöomorphismen auf Edges (Kanten), und
Homöomorphismen an Misiurewicz Punkten.

Edges EM ⊂M werden kombinatorisch konstruiert. Für viele Edges EM wird ein Homöo-
morphismus h : EM → EM erhalten, und sie bestehen aus homöomorphen Bausteinen,
den Frames (Rahmen). Der Beweis erfordert eine Familie von Homöomorphismen, da
die Frames kleiner sind als die Fundamentalbereiche einer einzelnen Abbildung. Wenn
ein Homöomorphismus h : EM → EM einen Misiurewicz Punkt a festläßt, dann ist h
oder h−1 dort expandierend, und definiert somit eine repulsive Dynamik im Parameterbe-
reich. Derartige Homöomorphismen werden für alle α-Typ und β-Typ Misiurewicz Punkte
konstruiert, und wir untersuchen den Zusammenhang zu der bekannten asymptotischen
Selbstähnlichkeit von M an a. Außerdem ergibt sich eine Familie von Ähnlichkeiten auf
verschiedenen Skalen.
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Introduction

A discrete dynamical system is given by a topological space X and a continuous

mapping f : X → X. Denote the iterates of f by f 1 := f , f 2 := f ◦ f , . . . .

One is interested in qualitative properties of the iteration process, like the exis-

tence of attractors or attracting periodic points, the stability of the orbit (fn(x))

under perturbations of x ∈ X or of the mapping f . Applications include models of

biological systems, flows and Poincaré maps of continuous time systems, and numer-

ical algorithms like Newton’s method or the discretization of differential equations

[Sn]. Particularly strong results are known in the complex analytic case, where

X ⊂ Ĉ := C ∪ {∞} and f is holomorphic.

We will consider the family of quadratic polynomials fc(z) := z2 + c, parametrized

by c ∈ C. The filled-in Julia set Kc of fc consists of all z ∈ C, such that the

orbit (fn
c (z)) is bounded; its complement is the basin of attraction to ∞. The orbit

is stable under perturbations of z unless z belongs to the Julia set, the boundary

∂Kc . The function fc has a unique critical point z = 0, and the critical value is

z = c. It is known that Kc is connected, iff the orbit of z = 0 (or z = c) under fc is

bounded. The Mandelbrot set M contains precisely the parameters c ∈ C with this

property. The dynamics of fc is stable under perturbations of c, unless c belongs to

the boundary ∂M, the bifurcation locus. M is fascinating both for its complicated

“fractal” structure and for the combinatorial methods to describe this structure.

The following three principles form a basis for the description of M, they go back

to the pioneering work of Douady and Hubbard [DH1, D1, DH2, DH3, D2]:

• The Mandelbrot set M is a subset of the parameter plane, and for every

parameter c there is a dynamic plane, where the mapping z 7→ fc(z) = z2 + c

and the filled-in Julia set Kc live. The parameter c has the same numerical

value as the critical value c = fc(0) of fc in the corresponding dynamic plane.

Many results on M are obtained from the following intuition: suppose that

a ∈ M and consider parameters c ≈ a in a neighborhood of a. Look at the

family of filled-in Julia sets Kc in neighborhoods of the corresponding critical

values, i.e. z ≈ c. If there is some common structure in these sets, the same

structure will be found in M at a.

• By the definition of M, the filled-in Julia set Kc is connected, iff the parameter

c belongs to M. Then there is a unique conformal mapping Φc from the

complement of Kc to the complement of the closed unit disk D, such that it

is conjugating fc(z) = z2 + c to F (z) = z2, F = Φc ◦ fc ◦ Φ−1
c . A straight ray

R(θ) := {rei2πθ | r > 1} is mapped by F to the ray F (R(θ)) = R(θ′) with

7



θ′ = 2θ(mod 1). Dynamic rays Rc(θ) are defined as preimages of straight

rays R(θ) under Φc . Due to the conjugation we have fc(Rc(θ)) = Rc(θ
′). In

addition, one constructs a conformal mapping ΦM from the complement of M
to the complement of D. Now parameter rays RM(θ) are defined analogously,

as the preimages of straight rays R(θ) under ΦM , see Figure 1.

• When θ is a rational angle, it is periodic or preperiodic under doubling (mod 1).

If Kc is connected, the dynamic ray Rc(θ) is “landing” at a point z ∈ ∂Kc ,

which is periodic or preperiodic under the iteration with fc . An analogous

statement holds in the parameter plane: for rational θ, the parameter ray

RM(θ) is landing at a special point c ∈ ∂M. Both the structure of Kc and of

M is described by pinching points, i.e. points where at least two external rays

are landing, or equivalently: removing this point form Kc or M, respectively,

disconnects this set. There are combinatorial methods to show that for certain

rational angles θ1, θ2 the parameter rays RM(θ1), RM(θ2) are landing together

at the same parameter in ∂M, or that the dynamic rays Rc(θ1), Rc(θ2) are

landing together at ∂Kc (for suitable c ∈ M). Thus rational angles provide a

simple characterization of subsets of M or Kc , that are obtained from discon-

necting the set at some pinching points.

R(1/7) R(1/7)

Rc(1/7) RM(1/7)↑ Φc ↑ ΦM

Figure 1: A connected filled-in Julia set Kc and the Mandelbrot set M. External rays
and equipotential lines are defined as preimages of straight rays and circles under the
conformal mappings Φc : Ĉ \ Kc → Ĉ \ D and ΦM : Ĉ \M → Ĉ \ D, respectively.
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Branner, Douady, and Fagella [BD, BF1, BF2] have constructed Homeomorphisms

between subsets of M by quasi-conformal surgery. The basic idea is the following

one: start with a parameter c ∈ M and the corresponding quadratic polynomial

fc . Construct a new piecewise defined mapping gc in the dynamic plane of fc in

a specific way, then gc is conjugate to a unique quadratic polynomial fd . Now the

mapping between subsets of M is defined by h(c) := d, and it is shown to be a

homeomorphism.

We shall give a general construction for homeomorphisms that are mapping a subset

EM ⊂M onto itself, where EM is defined by disconnecting M at one or two pinching

points. These homeomorphisms h : EM → EM have the following new property: EM

is the disjoint union of subsets Sn , n ∈ Z, such that h : Sn → Sn+1 . In this way, a

countable family of mutually homeomorphic subsets of M is obtained from a single

homeomorphism. While Kc is self-similar in the sense that it is invariant under fc ,

M is only qualitatively self-similar up to some level of detail. Thus the existence of

such homeomorphisms is unexpected at first. When the parameter c moves within

EM from some parameter c0 to d0 = h(c0), the filled-in Julia sets Kc undergo an

infinite number of bifurcations, and there are corresponding changes in the local

structure of M at c. But these bifurcations combine in such a way that M at d0

is homeomorphic to M at c0 again, and Kd0 is homeomorphic to Kc0 . The general

Theorem is applied in two situations:

• We construct families of subsets of M, which are called edges and frames. The

combinatorial construction relies on a recursive interplay between the landing

properties of dynamic rays and parameter rays, respectively. The Mandelbrot

set consists of the main cardioid plus a countable family of limbs, e.g. the limb

M1/3 is attached to the cardioid at the landing point of RM(1/7), cf. Figure 1.

(Note that 1/7 is 3-periodic under doubling). Now each limb has a graph-like

structure, hence the name “edge”. On many edges EM there is a homeomor-

phism h : EM → EM , and these edges consist of mutually homeomorphic frames,

cf. Figure 1.3 on page 19. These frames provide a finer decomposition of EM

than the fundamental domains Sn from the general construction above, and a

family of homeomorphisms is employed to show that all frames on the same

edge are pairwise homeomorphic.

• A parameter a ∈M is called a Misiurewicz point, if the critical value a of fa is

strictly preperiodic. In the general construction, the pinching points separating

EM from M\EM are Misiurewicz points, say a and b, and the homeomorphism

h : EM → EM satisfies h(a) = a and h(b) = b. h is qualitatively linear at

a and b, and this exact, approximately linear self-similarity of M provides

a complement to Tan Lei’s [T1] linear, approximate self-similarity of M at

a and b. Conversely, given a Misiurewicz point a, we try to find a suitable

subset EM and a homeomorphism h : EM → EM at a. This is accomplished for

all Misiurewicz points of period 1, i.e. some iterate of a meets one of the two

fixed points of fa .
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The iteration of complex quadratic polynomials will have few direct applications.

But it yields results on real unimodal mappings, and bifurcating complex dynami-

cal systems often behave locally like quadratic polynomials: the bifurcation loci in

complex one-dimensional parameter spaces generically contain copies of ∂M [Mu4],

cf. the example of Newton’s method in Figure 1.1. The family of quadratic polyno-

mials is a simple case of an analytic family, and it has special properties due to the

facts that it has only one active critical point, and that the basin of ∞ is connected.

There are two approaches to generalize our results to more general one-parameter

families: one is the generic appearance of M in these parameter spaces, and the

other idea is to apply the methods developed here for z2 + c to other families, which

satisfy certain relations between critical or (pre-) periodic points. It is a project of

current research to obtain homeomorphisms at Misiurewicz points in the parameter

plane of Newton’s method for polynomials of degree 3.

This manuscript is organized as follows: most results are summarized in a less tech-

nical manner in Chapter 1. Conformal- and quasi-conformal mappings and the

hyperbolic metric are discussed in Chapter 2, and Chapter 3 describes many well-

known combinatorial features of the Mandelbrot set and the dynamics of quadratic

polynomials, which will be needed later on. Chapter 4 provides the technical ba-

sis for quasi-conformal surgery, it contains a complete proof of the Straightening

Theorem [DH3] in its generalization to quasi-regular mappings, and a discussion of

renormalization. The general construction of homeomorphisms is obtained in Chap-

ter 5. The combinatorial description of edges and frames, and the construction of

the related homeomorphisms, is found in Chapters 6 and 7. Homeomorphisms at

Misiurewicz points are discussed in Chapter 8, and the asymptotic-self-similarity is

extended to multiple scales. Chapter 9 contains a combinatorial description (and

a partial combinatorial construction) of the homeomorphisms, and the homeomor-

phism group of M is discussed.
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1 Summary of Results

After a short introduction to quasi-conformal surgery in Section 1.1, new results from

Chapters 5 to 9 are outlined in Sections 1.2 to 1.6. Open problems are considered

in Section 1.7.

1.1 Quasi-Conformal Surgery

Figure 1.1: Denote by Pλ(z) the third-degree polynomial with zeros at 1, −1/2 + λ and
−1/2−λ, and by gλ(z) := z−Pλ(z)/P ′λ(z) the associated Newton mapping. The left image
shows the dynamic plane for a special parameter λ. The three shades of gray indicate that
z is iterated to one of the roots of Pλ , and the black copy of a quadratic Julia set means
that g2

λ is quadratic-like there, gλ has an attracting 6-cycle. The parameter plane on the
right shows a black copy of M, for these values of λ the critical value 0 of gλ is not
iterated to a root, but every second iterate belongs to a quadratic filled-in Julia set. Here
the shades of gray mean that 0 is attracted to the corresponding root.

A diffeomorphism ψ maps certain infinitesimal ellipses (i.e. ellipses in the tangent

space) to circles, and the dilatation ratio is bounded on compact sets. Now a

quasi-conformal mapping ψ is a homeomorphism that is only required to be weakly

differentiable, but the dilatation of the ellipses shall be bounded globally. The use

of these mappings in complex dynamics was introduced by Sullivan [Su2]. The idea

is the following one: suppose that g is holomorphic and an ellipse field (described

by a Beltrami coefficient µ) is invariant under T∗g. The Ahlfors-Bers Theorem

yields a quasi-conformal homeomorphism ψ mapping these ellipses to infinitesimal

circles. Then the composition f = ψ ◦ g ◦ψ−1 maps almost every infinitesimal circle

11



to a circle and is thus a holomorphic function with the same dynamic properties

as g. In fact f is holomorphic already if g is quasi-regular, as long as there is

a T∗g-invariant ellipse field. Thus g may be defined piecewise e.g. by iterates of

given holomorphic mappings, such that it is not holomorphic but it has the desired

qualitative dynamics. See [CG, D3, Sh1] for some examples and references.

A holomorphic proper 2:1 mapping g : U → U ′ is called quadratic-like, if U, U ′ are

Jordan domains and U ⊂ U ′. Douady–Hubbard’s Straightening Theorem yields a

conjugation ψ from g to a quadratic polynomial f : the topological mapping prop-

erty is enough to ensure that the dynamics are the same as those of a polynomial.

The conjugation is a hybrid-equivalence, i.e. it is complex differentiable a.e. on the

filled-in Julia set, and the polynomial is unique if the Julia set is connected. The

straightening explains that M contains homeomorphic copies of itself (renormaliza-

tion and tuning), and that copies of M appear in other parameter spaces, cf. the

standard example in Figure 1.1. The concept of renormalization has led to partial

results towards local connectivity or triviality of fibers [S3]. The Straightening The-

orem generalizes to quasi-regular mappings g, and Chapter 4 contains a complete

proof not only for the reader’s convenience, but details from the proof are required

for the extension of homeomorphisms to the exterior of M.

See [EY, Ha1] for homeomorphisms between two-dimensional parameter spaces. Ho-

meomorphisms h between subsets of M are obtained by constructing gc piecewise

from fc , straightening it to a polynomial fd and setting h(c) := d. Known examples

by Branner–Douady, Branner–Fagella and Riedl are reviewed in Section 4.5. The

first step of the construction is combinatorial: define subsets EM , ẼM of M and for

c ∈ EM construct a piecewise defined mapping g(1)
c from fc , which is 2:1 and holo-

morphic except for “shift discontinuities” on some rays, and which has the same

combinatorics as polynomials with parameters in ẼM . It shall be expanding in some

sense. In [BF2] and in our case, g(1)
c satisfies the following condition:

Condition 1.1 (Nicest Case of Surgery)

C is cut into finitely many pieces by dynamic rays landing at pinching points of Kc .

In these pieces g(1)
c is of the form f−k

c ◦ (±f l
c). The set of non-escaping points of g(1)

c

coincides with Kc .

In the case of renormalization, this condition is not satisfied because the Julia set

is restricted. In other cases, g(1)
c is defined not only by iterates of fc but also by

conformal mappings of some sectors. Or one constructs g(1)
c on a Riemann surface

obtained by cut- and paste techniques.

In any case, the second step consists of replacing g(1)
c with a quasi-regular mapping

gc , which coincides with g(1)
c except in some sectors Tc , where the shift discontinuities

of g(1)
c are smoothed out. At the same time domains Uc and U ′

c are defined, such

that gc : Uc → U ′
c is quadratic-like, the iterates gn

c shall have a uniformly bounded

dilatation. If no sector of Tc is periodic, this condition is satisfied for any choice of

gc in Tc (Shishikura’s Principle [Sh1]). If a sector is periodic, one can require that

some iterate of gc is analytic there.
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In the third step one obtains a hybrid equivalence ψc ◦ gc ◦ ψ−1
c = fd . One way is

to construct a gc-invariant ellipse field µ, conjugate gc with a solution of the corre-

sponding Beltrami equation to obtain an analytic quadratic-like mapping, and then

apply the Straightening Theorem of [DH3]. Alternatively one can adopt the proof

of that theorem to straighten the quasi-regular mapping gc directly (Theorem 4.3).

Now d ∈ ẼM is verified combinatorially.

In the fourth step we define a mapping h : EM → ẼM by h(c) := d. An analogous

mapping h̃ : ẼM → EM is obtained by constructing g̃(1)

d and g̃d from fd , straightening

g̃d to fe and setting h̃(d) := e. By showing that h and h̃ are independent of certain

choices, one obtains hybrid-equivalences between fc and g̃d and between fd and ge ,

thus h̃ = h−1. The parametrization of hyperbolic and non-hyperbolic components

(Sections 3.3 and 3.7) is employed to show that h is analytic in the interior of EM ,

and continuity at the boundary is obtained from quasi-conformal rigidity. Thus

h : EM → ẼM is a homeomorphism.

?6

⇒

⇐

ψcψ̃d

fc gc

fdg̃d

Figure 1.2: A simulation of Branner–Douady surgery ΦA : M1/2 → T ⊂M1/3 . Here the
Riemann mapping is simulated by an affine mapping, cf. Section 4.5. Top left: the Julia
set Kc of fc , where c is a period-4 center in M1/2 . Top right: the Julia set of gc , which is
quasi-regular and has a superattracting 6-cycle, has grown additional arms. Bottom right:
conjugation with a quasi-conformal ψc yields fd , where d is a period-6 center in M1/3 .
Bottom left: the quasi-regular mapping g̃d has a superattracting 4-cycle, and the Julia set
has lost some arms. Conjugation by ψ̃d yields fc again.

In some cases, further steps can be performed: h is extended to the exterior of

EM as a homeomorphism. Or one constructs a mapping HM of external angles, such

that HM(θ) is an external angle of h(c), if θ is an external angle of c. These results

are obtained easily if Condition 1.1 is satisfied: then there are mappings G and H in

the exterior of D, such that gc = Φ−1
c ◦G ◦Φc and ψc = Φ−1

d ◦H ◦Φc in the exterior

of Kc . If gc = fN
c in a neighborhood of z = 0, then h := Φ−1

M ◦ H ◦ FN−1 ◦ ΦM

provides an extension of h to the exterior of EM , and HM = H ◦ FN−1, where H is
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the boundary value of H on S1. Under Condition 1.1, EM and ẼM are obtained by

disconnecting M at a finite number of pinching points, and the Julia sets Kc and

Kd are homeomorphic.

1.2 The Homeomorphism h on an Edge

The fixed points of fc are distinguished by the fact that βc is the landing point of

Rc(0), while αc is in general the landing point of several rays. The limb Mp/q ⊂M
contains those parameters c, such that Kc \ {αc} has q branches, and the combi-

natorial rotation number is p/q. We will construct a variety of homeomorphisms

between subsets of M. Mostly we deal with homeomorphisms mapping some pa-

rameter edge onto itself, and the construction is explained here for a special edge

in the limb M1/3 . The necessary modifications for more general cases are discussed

later. M1/2 would be simpler, but certain pinching points are not branch points in

that case, i.e. there are only two branches. Thus some features would be neglected

by concentrating on M1/2 , and moreover the illustrating images would be less in-

structive, since only branch points are recognized easily. On the other hand, the

case of Mp/q with q ≥ 4 is qualitatively the same as that of M1/3 , only the notation

would become more involved.

We shall employ the notations γc(θ) and γM(θ) for the landing points of dynamic

rays and parameter rays, respectively. For c ∈ M1/3 , the fixed point αc of fc has

the external angles 1/7, 2/7, 4/7, and Kc \ {αc} has three connected components.

The part of Kc connecting ±αc , and some of its preimages, are called dynamic

edges, a precise definition will be given in Section 6.1. The parameter edges in

M1/3 are connecting certain Misiurewicz points c of α-type, i.e. fk
c (c) = αc . We

will consider a = γM(11/56) and b = γM(23/112), which are the unique α-type

Misiurewicz points of orders 3 and 4 in M1/3 . The parameter edge EM shall be the

component of M\{a, b} that connects a and b. For parameters c ∈ EM , the critical

value c of fc belongs to the dynamic edge Ec connecting γc(11/56) and γc(23/112).

It is mapped by fc to the dynamic edge connecting γc(11/28) and γc(23/56). After

two more iterations it is mapped to the edge connecting ±αc . See also Figures 6.1

and 6.2.

From fc we shall construct a quasi-regular mapping gc , which equals fc except in

a neighborhood of Ec . The dynamic edge between ±αc contains the 3-periodic

pinching point γc(5/63) = γc(40/63) and a preimage γc(17/126) = γc(73/126). Now

f 3
c maps the part of Kc between αc and γc(17/126) onto the part between αc and

γc(5/63), and a branch of f−3
c (−z) maps the part between γc(17/126) and −αc onto

the part between γc(5/63) and −αc . Thus a mapping jc from the edge between

±αc onto itself is obtained. This construction is suggested by the fact that f 3
c

is expanding at αc without permuting the three local branches of Kc. jc can be

defined in this way whenever there is a pinching 3-cycle at γc(5/63), i.e. in the

1/2-subwake of the period-3 component. (Hyperbolic components Ω of M consist
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of parameters c, such that fc has an attracting cycle of some period. The cycle

is superattracting for the center of Ω and parabolic for the root of Ω. Roots are

landing points of parameter rays with periodic angles, while Misiurewicz points have

preperiodic external angles.)

Now gc : Ec → fc(Ec) shall be given by f−2
c ◦ jc ◦ f 3

c . In fact we define strips

Vc and Wc containing Ec , and a mapping g(1)
c is defined in Figure 5.1 on page 75.

It has shift discontinuities on six external rays, which will be smoothed out by a

quasi-conformal interpolation in sectors around these rays. Then we will obtain

a hybrid-equivalence ψc from gc to a quadratic polynomial fd with d ∈ EM , and

define a mapping h : EM → EM by setting h(c) := d. It is a homeomorphism (and

different from the identity). If c is a center of period p, then d is again a center, but

the period q may be different: we have q = p + 3(w − v), where v and w indicate

how often the critical orbit of fc visits Vc and Wc . The period-7 component at

γM(25/127) is mapped to the period-4 component at γM(3/15), which in turn is

mapped to the period-7 component at γM(26/127). On a macroscopic level, h is

expanding at a and contracting at b. When a parameter moves from a to b, the

Julia set undergoes an infinite number of bifurcations, e.g. such that preimages of

αc exchange their branches, or that new periodic pinching points are created (see

Section 7.3). Analogous changes are observed between parts of EM that are closer

to a or to b, thus the existence of a homeomorphism is unexpected at first.

We obtain the general Theorem 5.4 analogous to the following one for a class of

surgeries satisfying Condition 1.1. Our aim is to show that quasi-conformal surgery

is simple: the proof is given in full detail, relying only on a few basic results about

quasi-conformal mappings and landing properties of external rays. Several com-

ments on possible alternative techniques are included, and we discuss the conse-

quences of certain choices to be made for gc . A quasi-conformal mapping H is con-

structed dynamically in the exterior of the unit disk, conjugating G = Φc ◦ gc ◦Φ−1
c

to F (z) = z2. Thus an important step of the surgery is done in the exterior of D.

h is extended to the exterior of M, and H yields a simple representation of the

extended h, which shows that h is quasi-conformal in the exterior of EM . Here we

build on the relation ΦM(c) = Φc(c).

Theorem 1.2 (A Homeomorphism on an Edge)

Two α-type Misiurewicz points in the limb M1/3 are denoted by a = γM(11/56)

and b = γM(23/112). The parameter edge EM shall be the component of M\ {a, b}
connecting a and b (with a, b included). For c ∈ EM , g(1)

c is the piecewise defined

mapping from Figure 5.1 on page 75.

1. For every c ∈ EM , there is a quasi-regular quadratic-like mapping gc : Uc → U ′
c

with gc = g(1)
c on Kc .

2. There are a unique d ∈ EM and a hybrid equivalence ψc with gc = ψ−1
c ◦ fd ◦ ψc

on Uc . The filled-in Julia sets Kc and Kd are quasi-conformally homeomorphic. A

mapping h : EM → EM is defined by h(c) := d, it is independent of the choice of gc .

3. h is a non-trivial homeomorphism of EM onto itself, fixing a and b. It is analytic
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in the interior of EM and compatible with tuning. A hyperbolic component of period

p is mapped to a hyperbolic component of period q with 4
7
p ≤ q ≤ 7

4
p. Moreover, h

and h−1 are Lipschitz continuous at a and b. We have hn(c) → b for c ∈ EM \ {a}
and h−n(c) → a for c ∈ EM \ {b}.
4. We construct mappings G and H in the exterior of D, such that for c ∈ EM ,

gc := Φ−1
c ◦G◦Φc and ψc = Φ−1

d ◦H ◦Φc in the exterior of Kc . H is quasi-conformal

and conjugates H ◦G◦H−1 = F . The homeomorphism h is extended to the exterior

of EM by setting h := Φ−1
M ◦H ◦ ΦM .

5. The extended homeomorphism h is quasi-conformal in the exterior of EM . The

dilatation bound K cannot be less than 7/4. Domain and range of h are described

explicitly, cf. Figure 5.5 on page 87.

See Section 6.2 for the generalization to countable families of parameter edges of

M1/3 , and Section 7.4 for arbitrary limbs. A combinatorial description of h is

provided in Theorem 1.5. The proof is simplified by employing the representation of

the extended h in terms of H. See Theorem 5.4 for a discussion of h in greater detail:

e.g. h is Hölder continuous at Misiurewicz points, and its dynamics are explained

qualitatively from the mapping ηc : Ec → Ec with g(1)
c = fc ◦ ηc . It is expanding

or contracting in certain regions of the dynamic plane, and h will have analogous

properties on corresponding subsets of M.

1.3 Comparison of Techniques and Results

Most results from Theorem 1.2 (and of Theorem 1.5, items 1 and 2) can be proved by

adapting the techniques of [BD, BF1, BF2]. We shall formulate a general theorem

for the construction of a homeomorphism h from a combinatorially defined mapping

g(1)
c and use different techniques e.g. in the following situations:

• The quasi-regular interpolation in sectors is not constructed by a pullback of

quadrilaterals as in [BF1, BF2], but by showing that there is a homogeneous

quasi-conformal mapping with the prescribed boundary values.

• The proof of the Straightening Theorem is adapted to gc as in [BF2], but

we follow the proof by Douady–Hubbard instead of that by Shishikura. This

gives greater freedom in the construction of ψc , which will be useful for the

extension of h to the exterior.

• A best-possible result on “independence of the choices” is obtained from a

simple distortion estimate for quasi-conformal mappings: two quasi-regular

quadratic-like mappings, which have the same filled-in Julia set and which

coincide there, are hybrid-equivalent. This Proposition 4.2 is employed to give

a detailed proof of bijectivity.

• A quasi-conformal mapping H is constructed dynamically in the exterior of the

unit disk. It yields a simple representation of the extended homeomorphism h
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in the exterior of EM , which shows that h is quasi-conformal there and which

gives an explicit description of its range. H and the extended h are employed

to obtain results on combinatorial surgery, i.e. to construct the mapping H :

S1 → S1 of Theorem 1.5. The Hölder exponent of H yields a lower bound on

the dilatation of H.

• An alternative approach to surgery is discussed in Section 9.3: H is constructed

combinatorially, as a homeomorphism of the abstract Mandelbrot set S1/∼,

and h is almost reconstructed from H.

Known homeomorphisms between subsets of M are the various kinds of renormal-

ization and tuning, and the mappings described in Section 4.5. A motivation for

the Branner–Douady homeomorphism ΦA and the Riedl homeomorphisms between

branches is to construct paths in M (and in Multibrot sets), cf. Theorem 4.9. This

is seen as a step towards the famous conjecture that M is locally connected (MLC),

which would imply that its interior consists of hyperbolic components only. We do

not believe that the homeomorphisms on edges shall be used to obtain results on

pathwise or local connectivity of M or Kc : whenever it is known that Kc is locally

connected, the conjugation gc = ψ−1
c ◦fd ◦ψc shows that Kd is locally connected too,

but presumably that could have been shown directly by the same means as for Kc .

(In the case of the Riedl homeomorphisms for Multibrot sets [R1], results from the

real axis [LvS] are transferred to other regions.)

We are interested in describing the structure of M by identifying homeomorphic

building blocks. The Branner–Fagella homeomorphisms between limbs are compa-

rable to the homeomorphisms on edges since in both cases Condition 1.1 is satisfied.

Especially the homeomorphic subsets of M are obtained from disconnecting M at

a finite number of pinching points (in other cases, infinitely many “decorations” are

cut off). The collections of mutually homeomorphic limbs are finite. In our case the

following new features appear:

• For a parameter edge EM behind γM(10/63), the homeomorphism h : EM → EM

may be iterated, and EM is decomposed into a countable family of homeomor-

phic fundamental domains.

• Each parameter edge EM behind γM(9/56) consists of a countable family of

parameter frames plus an exceptional Cantor set. All of these frames are

pairwise homeomorphic. The proof employs a family of homeomorphisms on

certain edges contained in EM . The frames provide a finer decomposition than

the fundamental domains of a single homeomorphism.

• Many edges are mutually homeomorphic, too. In some cases homeomorphisms

are defined piecewise on a countable family of subsets. Moreover, this tech-

nique yields homeomorphisms of M, which map some Misiurewicz point to

a parameter which is not a Misiurewicz point, or homeomorphisms which are

not Hölder continuous at some Misiurewicz point.
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• We obtain repelling dynamics on M in neighborhoods of all α-type and β-

type Misiurewicz points. The relation to the asymptotic self-similarity of M
is discussed.

• The homeomorphisms on edges extend to homeomorphisms of M onto itself,

thus results on the homeomorphism group of M are obtained.

1.4 Edges and Frames

Roots of hyperbolic components are landing points of parameter rays with periodic

angles, while Misiurewicz points have preperiodic external angles. Moreover, θ is

an external angle of the critical value c in the dynamic plane, if c = γM(θ) and

θ is preperiodic. Proposition 3.14 formulates a correspondence between subsets of

M and subsets of Kc via the same landing pattern of certain parameter rays and

dynamic rays, respectively. It is a direct consequence of the landing properties

and a stability statement; the dynamic landing pattern can change only when c

meets certain roots or Misiurewicz points. The landing points of external rays with

appropriate rational angles are pinching points, which are used to define compact

connected full subsets of M or Kc : removing some pinching points disconnects M
or Kc into finitely many components, and usually we are interested in a component

containing all of these pinching points on its boundary, or in the union of some

components and the pinching points. The use of rational angles serves two purposes

here: they provide a simple unique characterization of a pinching point, and spec-

ifying two external angles of a branch point decomposes the ensemble of branches

into two subsets.

For c ∈ M1/3 , the dynamics of fc on Kc and thus the structure of Kc can be

understood from a few principles: fc is even, and Kc \ {αc} has three connected

components, which are rotated under the local action of fc . These statements imply

the dynamics at −αc , and in the notation from Figure 3.2 on page 50 we have: fc

maps both 12 and 02 injectively to 20, both 20 and 00 to 0 = 01 ∪ 02 ∪ 00, and

01 to 12 as a double covering. The critical point 0 belongs to 01 and the critical

value c belongs to 12. If these points are pinching points of Kc , then each of the

two parts of Kc between 0 and ±αc is mapped injectively onto the part between αc

and c, and the remaining connected components of Kc \ {0} are mapped behind c.

This principle is a good intuition also when 0 and c are not pinching points.

The prototype of dynamic edges is the connected component E1
c of Kc \ {αc, −αc}

containing 0, with the vertices ±αc included. If a connected Ec ⊂ Kc is mapped onto

this edge by fn−1
c , and fn−1

c is injective in a strip around Ec , then Ec is called an

edge of order n. From the principles of the above, some edges are obtained in a way

independent of c ∈ M1/3 . But E1
c contains two preimages of αc of order 4, whose

qualitative location depends on the location of c. If c is behind γM(9/56), then

these two points separate 0 and ±αc from each other, and E1
c consists of two edges

of order 4 and a subset F1
c containing 0, which is mapped 2:1 onto the branches
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behind γc(9/56) by fc . If Fc ⊂ Kc is mapped injectively onto F1
c by fn−1

c , then Fc

is called a dynamic frame of order n. The dynamics of maximal edges and frames

are simple and provide another intuition for the dynamics of fc . A hierarchy of

maximal frames is obtained on every edge of order n: one frame of order n, two

frames of order n+ 3, four of order n+ 6 and so on.

a

b

F4
M(3, 4)

F7
M(25, 34)

F7
M(26, 33)

F10
M

F10
M

F10
M

F10
M

Figure 1.3: The parameter edge EM = E4
M(3, 4) from a to b. For the location of this

edge within M1/3 cf. the figures on pages 8, 97 and 103. The subsets in the right image
are the mutually homeomorphic frames of orders 4, 7 and 10 on this edge, cf. Figure 7.2
on page 111. In the notation En

∗ (w−, w+) or Fn
∗ (u−, u+) , three integer indices specify an

edge or a frame uniquely.

Suppose that EM ⊂M1/3 is obtained by disconnecting M at two α-type Misiurewicz

points, called vertices of EM . If for all c ∈ EM there is a dynamic edge Ec with the

same external angles at its vertices, then EM is a parameter edge. Parameter frames

are defined analogously by their correspondence to dynamic frames. These sets

are constructed recursively by applying Proposition 3.14: the maximal dynamic

edges have the same bounding external angles for all c ∈ M1/3 , thus there are

corresponding maximal parameter edges. For c in a branch behind γM(9/56), there

are maximal dynamic frames with stable angles, yielding maximal parameter frames.

A finer analysis shows that these contain smaller edges and frames. There is a partial

combinatorial description of the location of maximal tuned copies of M by finite

nested sequences of parameter edges and frames. The name “frame” is motivated

by this fact, since maximal tuned copies are called “windows” in real dynamics.

Parameter edges are the natural domains for homeomorphisms analogous to the one

of Section 1.2, and these are mapping frames to frames. The maximal frames are

finer than the fundamental domains, but they can be mapped to each other by a
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suitable family of homeomorphisms on subedges.

Theorem 1.3 (Edges and Frames)

1. The maximal parameter edges in M1/3 form a graph with three edges at every

vertex, and M1/3 consists of this graph plus an exceptional Cantor set. An edge be-

hind γM(9/56) consists of a hierarchy of mutually disjoint frames plus an exceptional

set, which is contained in a Cantor set.

2. If EM is a parameter edge behind γM(10/63), there is a homeomorphism h : EM →
EM with properties analogous to Theorem 1.2.

3. If EM is a parameter edge behind γM(9/56), the maximal frames on EM are mu-

tually homeomorphic.

4. The maximal parameter edges in e.g. the left branch behind γM(9/56) are mutually

homeomorphic.

The results generalize to other limbs, except for item 4. The proof of item 4 re-

quires mappings from Chapter 8 and piecewise constructions. The homeomorphisms

considered here are orientation-preserving; there are well-known homeomorphisms

between the left and right branch of M1/3 , which are not orientation-preserving.

1.5 Repelling Dynamics at Misiurewicz Points

A main objective of our construction of homeomorphisms is the identification of

homeomorphic building blocks, e.g. the fundamental domains for the expanding

dynamics at a vertex. A second objective is the relation to the scaling properties

of M, which we shall discuss for an example: the principal Misiurewicz point a in

M1/3 has the external angles 9/56, 11/56 and 15/56. The edges of the Julia set

Ka are filled with star-shaped degenerate frames, whose vertex is a preimage of the

critical value a. A classical result of Tan Lei says that M is asymptotically self-

similar at a, where the scale ρa or ρ3
a is the multiplier of the repelling fixed point

αa of fa . If M is blown up by this factor around a, it converges to an asymptotic

model Ya in some sense, and this model set is linearly self-similar and related to the

Julia set Ka . See Figure 8.5 on page 135. Our original motivation for the definition

of parameter frames was the fact that these behave asymptotically like the stars in

Ka , and that they are characterized by the same external angles.

The homeomorphism h : EM → EM from Section 1.2 is fixing a and it is qualitatively

expanding there. It provides a non-linear exact self-similarity as a complement to the

asymptotic (non-exact) linear self-similarity of M at a. Some connections between

these two concepts are made precise in item 1 of the following theorem. The example

of a is discussed in detail, and we construct homeomorphisms with similar properties

for arbitrary α- and β-type Misiurewicz points. Since homeomorphisms at β-type

Misiurewicz points are mapping certain edges to edges, the homeomorphisms from

item 4 of Theorem 1.3 are obtained along the way. Some years ago Dierk Schleicher
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saw that “repelling dynamics in the parameter plane” can be obtained by surgery,

but he did not work out his constructions in detail [private communication].

Theorem 1.4 (Homeomorphisms at Misiurewicz Points)

1. The homeomorphism h : EM → EM from Theorem 1.2 is related to the asymptotic

self-similarity of M at a = γM(9/56) e.g. by the following properties:

• There are sequences (cj) of centers or Misiurewicz points converging geomet-

rically to a, i.e. cj ∼ a +Kρ−3j
a , such that h(cj+1) = cj . There are sequences

of parameter frames with similar properties.

• There is a sequence (Sj) ⊂ EM of fundamental domains for h at a,

i.e. h(Sj+1) = Sj , such that ρ3j
a (Sj − a) converges to a subset S ⊂ Ya , which

is a fundamental domain for the scaling of a global branch of Ya by ρ3
a .

2. h is Lipschitz continuous but not asymptotically linear at a, since there are other

sequences of points or sets with a different scaling behavior.

3. Homeomorphisms with analogous properties are constructed for all α- and β-type

Misiurewicz points in M.

4. M shows asymptotic linear self-similarities on many scales around a sequence of

centers cn , in particular there is an asymptotic model for ρ3n/2
a (M− cn).

From a macroscopic viewpoint we have sets like the Sj or maximal parameter frames,

such that the corresponding sets in the dynamic plane do not return to the expanding

region Vc as a whole, and the parameter set is approximately mapped linearly by h,

since h acts qualitatively like ηa on Ka . But certain subsets are iterated through Vc

more often, and the behavior of h is not linear microscopically. Item 4 was obtained

in the course of these investigations, but its proof is based on the techniques of [T1],

it does not employ surgery.

Figure 1.4: For a sequence of centers cn spiraling towards the Misiurewicz point a =
γM(9/56), the rescaled sets ργkn

a (M− cn) with γk = 1, 3/2, 7/4, . . . converge for n → ∞
to asymptotic model sets. Their structure explains that the number of visible arms doubles
under suitable repeated magnifications around some cn . The images show magnifications
around c58 . In the left and middle image the corresponding subset of M already looks
like the limit model for γ0 = 1 and γ1 = 3/2, but in the right image one sees a little
Mandelbrot set in the center of the star. It will shrink to a point in the asymptotic model
for γ2 = 7/4, i.e. in the limit of a sequence of corresponding sets around cn for n→∞.
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1.6 Combinatorial Surgery and Homeomorphism

Groups

It would be hard to compute the decimal coordinates of d = h(c) by following the

construction of ψc from Theorem 1.2 (or the more general Theorem 5.4) and solving

the Beltrami equation numerically. But the image of any hyperbolic or Misiurewicz

parameter can be determined combinatorially. Properties of the related mapping H

of external angles are obtained easily by employing H and the extension of h. Con-

versely, H can be constructed combinatorially, and h can almost be reconstructed

from H (without employing quasi-conformal surgery). h and H provide the first

examples of orientation-preserving homeomorphisms of M or of some combinatorial

model of M.

Theorem 1.5 (Combinatorial Surgery and Homeomorphism Groups)

1. Recall the mappings F, G, H from Theorem 1.2, and denote their boundary values

on S1 by F, G, H. Then H is the unique orientation-preserving homeomorphism of

S1 conjugating H ◦G ◦H−1 = F. Now H(θ) is easily computed numerically from

the orbit of θ under G, which is piecewise linear. H is 4/7-Hölder continuous.

2. Suppose that c ∈ EM and d = h(c). Then θ is an external angle of z ∈ Kc , iff

H(θ) is an external angle of ψc(z) ∈ Kd . Note that H is independent of c. θ is an

external angle of c ∈ EM , iff H(θ) is an external angle of h(c) ∈ EM , thus h(c) can be

determined combinatorially if c is a Misiurewicz point or a root. Whenever RM(θ)

is landing at EM , then RM(H(θ)) is landing, too.

3. The group G ′′ of orientation-preserving, analytic homeomorphisms M→M has

cardinality |NN| , it is totally disconnected and not compact.

4. Analogous results hold for the homeomorphisms of the combinatorial model S1/∼
of M. Without employing quasi-conformal surgery, a combinatorial argument shows

that HM : S1 → S1 is a homeomorphism of S1/∼ and compatible with tuning, where

HM = H on the intervals corresponding to EM . Now h : EM → EM is almost

reconstructed from HM : only continuity at the boundary of non-trivial fibers is not

obvious.

1.7 Suggestions for Further Research

• If a homeomorphism h was extended from an edge EM to a strip PM as in

Theorem 1.2, it is quasi-conformal in PM \ ∂EM , but we do not know if it

is quasi-conformal everywhere. Lyubich [L4] has shown that disjoint renor-

malization is quasi-conformal in a neighborhood of the little Mandelbrot set.

According to [BF2], Branner and Lyubich claim that the result extends to the

Branner–Fagella homeomorphisms. Presumably the proof will work for our

homeomorphisms as well.

• Suppose that EM , ẼM ⊂ M and for c ∈ EM there is a mapping g(1)
c satisfy-
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ing Condition 1.1. Give the most general conditions such that there is an

associated quadratic-like mapping gc and such that its straightening defines a

homeomorphism h : EM → ẼM . The special case of EM = ẼM is considered in

Theorem 5.4, and some generalizations are discussed in Remark 5.3.

• Suppose that h is the usual homeomorphism on an edge EM behind γM(10/63),

expanding at the vertex a and contracting at b. Then it acts transitively on

the common fundamental domains for the dynamics at a and b, and we have

hn(c) → b and h−n(c) → a for all c ∈ EM \ {a, b}. Are there homeomor-

phisms with this property on edges before γM(10/63)? Computer graphics of

E7
M(19, 20) (in the 1/3-sublimb of the period-3 component) suggest that this

will not always be true.

• According to Sections 7.3 and 7.4, frames contain smaller edges and frames,

and every maximal tuned copy of M behind a principal Misiurewicz point

is characterized by a finite sequence of nested “pseudo-edges” and frames.

Is there a simple recursion for their orders, which would describe e.g. the

qualitative location of hyperbolic intervals on the real axis?

• Which subframes of a parameter frame are pairwise homeomorphic? What

is happening before the root? Are two frames in the same branch homeo-

morphic, whenever the arc connecting them does not travel through sublimbs

of a hyperbolic component with denominator > 2? Cf. the discussion in Sec-

tion 7.3. Describe an edge as a projective limit space by adding homeomorphic

structures iteratively.

• Which α-type Misiurewicz points a inM1/3 have the property that all branches

behind a are pairwise homeomorphic (by orientation-preserving mappings)?

Cf. the partial result in Theorem 6.6 and the remark thereafter. In a limb

Mp/q with q ≥ 4, classify maximal edges that are mutually homeomorphic.

• Give a general construction of expanding homeomorphisms at arbitrary Mis-

iurewicz points. For period 1 this is done in Theorem 8.1, see items 4 and 5

of Remark 8.2 for some generalizations. The missing cases are “most end-

points”, and one of the two branches at the Misiurewicz points corresponding

to primitive roots.

• An expanding homeomorphism at a Misiurewicz point a is related qualitatively

to the asymptotic self-similarity of M at a. Is there a homeomorphism with

linear scaling behavior, e.g. by a piecewise definition? See the discussion in

Section 8.5.

• We would like to know if the mapping H of external angles is absolutely

continuous, cf. the remarks in Section 9.2.

• The Multibrot set Md is the connectedness locus of the family of unicritical

polynomials zd +c, d ≥ 2. It has a combinatorial description similar to that of
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M [Eb, LaS], and a surgery satisfying Condition 1.1 yields a homeomorphism

by the same techniques as for d = 2. (If that condition is not satisfied, the

proofs of continuity and bijectivity may be not obvious, cf. the discussion of

Riedl homeomorphisms in Section 4.5.) The combinatorial construction of

edges and frames can be carried over to the Multibrot sets with d > 2, but

now an “edge” has d “vertices”, and an edge of order n contains one frame

of order n, d frames of order n + 3 . . . (in the 1/3-limb of every sector of the

main “cardioid”). The construction of gc to obtain homeomorphisms between

frames is not straightforward for d > 2, since a homeomorphism on an edge

should fix the d vertices, and thus it must not move the largest frame.
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2 Background

Conformal mappings, hyperbolic metrics and external rays are considered in Sec-

tion 2.1. Various aspects of quasi-conformal mappings are discussed in Sections 2.2

to 2.5. An introduction to the iteration of rational functions is given in Section 2.6.

2.1 Conformal Mappings

We start with some topological notions: Ĉ = C∪{∞} denotes the Riemann sphere,

and D is the unit disk. Its boundary corresponds to the “circle“ S1 := R/Z via the

parametrization S1 → ∂D, θ 7→ ei2πθ. In general the notation f : A → B means

that A is the domain of the mapping f and its range is contained in B. But if f

is said to be a homeomorphism, proper (Section 4.1), conformal or quasi-conformal,

f : A → B shall imply that f is a surjective mapping onto B. O(g(z)) denotes a

term that is bounded by a constant times |g(z)|, and o(g(z)) means a term that tends

to 0 after division by g(z). Moreover, f(z) � g(z) means that |f(z)| is bounded

above and below by multiples of |g(z)|. These notions require that some limiting

process for z is specified, usually z →∞.

A set K ⊂ Ĉ is disconnected, if there are disjoint open sets U, V with U ∩ K 6= ∅,
V ∩ K 6= ∅ and K ⊂ U ∪ V . It is connected otherwise. The connected components

of a set K are maximal connected subsets, they are equivalence classes of points

that do not belong to different sets U, V as above. K is totally disconnected, if

its connected components consist of single points. A totally disconnected perfect

compact set is called a Cantor set, it will be homeomorphic to the middle-1/3 set.

If K is connected and K \ {z0} is disconnected, then z0 is called a pinching point of

K. K is locally connected at z0 ∈ K, if there is a basis of neighborhoods for z0 in

Ĉ, whose intersections with K are connected. K is locally connected, if it is locally

connected at every z ∈ K. Every compact, connected, locally connected set in C
is pathwise connected [Mi2]. A bounded set K is called full, if its complement is

connected. An open set has an at most countable family of connected components.

A connected open set is a domain, it is always pathwise connected. An open set

G ⊂ C is simply connected, if every closed curve in G is homotopic to a point. A

Jordan arc in Ĉ is a homeomorphic image of an interval, and a Jordan curve in C
is a homeomorphic image of a circle. A Jordan domain is the interior Int(γ) of a

Jordan curve, i.e. the bounded component of its complement, equivalently it is the

(topological) interior of a set homeomorphic to the closed unit disk D.
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A bijective holomorphic mapping is conformal. By the Riemann Mapping Theo-

rem, every simply connected domain U in C, except for C itself, admits a conformal

mapping ψ onto the unit disk D, therefore U is called a conformal disk. ψ is de-

termined uniquely by prescribing the image of one interior point plus the argument

of the derivative there. ψ−1 extends continuously to D, iff ∂G is locally connected

(Carathéodory). A conformal mapping between Jordan domains extends to a ho-

meomorphism of the closures.

The degree of a rational function is the maximum of the degrees of numerator

and denominator (always assuming that these polynomials do not have a common

divisor). Rational functions are precisely the meromorphic mappings Ĉ → Ĉ. The

rational mappings of degree 1 are called Möbius transformations, these are the

automorphisms of Ĉ. The automorphisms of D, i.e. the conformal mappings D → D,

are of the form

z 7→ eiφ z − a

1− az
, φ ∈ R, a ∈ D . (2.1)

The Poincaré metric or hyperbolic metric dD of D is defined by the length of geodesics

for the metric function

dρD =
2|dz|

1− |z|2
. (2.2)

In particular dD(z, 0) = 2 artanh |z| . If f : D → D is holomorphic, the Schwarz-Pick

Lemma says that f is a local contraction for dD, and the automorphisms of D are

isometries. The hyperbolic metric is defined for every domain (or Riemann surface)

U covered by D : if ψ is a local inverse of a projection, we have

dρU =
2|ψ′(z)dz|
1− |ψ(z)|2

. (2.3)

Branches of ψ(z) =
log z + 1

log z − 1
yield the hyperbolic metric in D \ {0}:

dρD\{0} =
|dz|

−|z| log |z|
. (2.4)

If f : U → V is holomorphic, it is a strict local contraction for the hyperbolic

metrics, unless it lifts to an automorphism of D.

Suppose that K ⊂ C is compact, full and non-degenerate, i.e. it contains more

than one point. There is a unique Green’s function G : C → R, which is continuous,

positive, vanishes precisely onK, is harmonic in C\K, such that G(z) = log |z|+O(1)

for z → ∞. From now on we shall assume that K is connected. Then there is a

unique Riemann mapping Φ : Ĉ \ K → Ĉ \ D with Φ(∞) = ∞ and “ Φ′(∞) > 0 ”.

The Green’s function satisfies G(z) = log |Φ(z)| in C \ K. If ψ : Ĉ \ K → D is any

conformal mapping, the hyperbolic metric functions are obtained from

dρĈ\K =
2|Φ′(z) dz|
|Φ(z)|2 − 1

=
2|ψ′(z) dz|
1− |ψ(z)|2

≥ 2|ψ′(z) dz| , (2.5)

dρC\K =
|Φ′(z) dz|

|Φ(z)| log |Φ(z)|
=

|ψ′(z) dz|
−|ψ(z)| log |ψ(z)|

≥ e|ψ′(z) dz| . (2.6)
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Suppose that dist(z0, ∂K) = δ. The metric functions are independent of the choice

of ψ and we may assume ψ(z0) = 0. The Koebe One-Quarter Theorem yields

4|ψ′(z0)| ≥ 1/δ, thus

dρĈ\K ≥ 1

2δ
|dz| , dρC\K ≥ e

4δ
|dz| , with δ = dist(z, ∂K) . (2.7)

Estimates for general hyperbolic domains are found in [CG]. For θ ∈ S1 = R/Z,

external rays of K are defined by RK(θ) := {z ∈ C \ K | arg(Φ(z)) = 2πθ}. See

Sections 3.1 and 3.2 for discussions of K = Kc and K = M. If z0 ∈ ∂K and

z0 = lim Φ−1(rei2πθ) for r ↘ 1, then RK(θ) is landing at z0 , and θ is an external

angle of z0 . The set of cluster points of the ray (as r ↘ 1) is called its limit set,

it is compact, connected, and the ray is landing iff there is only one cluster point.

The impression of RK(θ) is defined by an additional limit θ′ → θ [S1]. Relations

between pinching points and external rays are discussed in Section 3.4.

Theorem 2.1 (Boundary Behavior of Φ)

Consider a compact, connected, full, non-degenerate set K ⊂ C, and the conformal

mapping Φ : Ĉ \ K → Ĉ \ D with Φ(∞) = ∞ and “ Φ′(∞) > 0 ”.

1. Suppose that (zn), (z′n) ⊂ C\K, z0 ∈ ∂K and zn → z0 . If the hyperbolic distances

dĈ\K(zn, z
′
n) or dC\K(zn, z

′
n) are bounded (uniformly in n), then z′n → z0 .

2. Φ−1 : Ĉ \ D → Ĉ \ K extends continuously to the boundary, iff K is locally

connected. (Carathéodory)

3. Suppose that an arc γ in Ĉ \ K is landing at z0 ∈ ∂K. Then Φ(γ) is landing at

some w0 = ei2πθ ∈ ∂D. For every arc γ̃ in Ĉ\D landing at w0 through a Stolz angle,

Φ−1(γ̃) is landing at z0 . In particular this holds for the ray RK(θ). (Lindelöf )

Moreover almost every external ray lands (Fatou), landing points are dense in ∂K,

and no interval of angles belongs to the same landing point (Riesz). Homotopic

curves landing at z0 ∈ ∂K define an access to z0 , and Lindelöf’s Theorem means

that there is exactly one ray landing at z0 through each access. It will be applied

in Sections 5.2, 5.6.4, and 9.1. Carathéodory’s Theorem is employed in Sections 4.4

and 9.5. Items 2 and 3 are proved in [CG], see also [Mi2] and the references in

[Mu3]. Item 1 is applied in Sections 3.1 and 4.1.

Proof of item 1: the distance function δ(z) := dist(z, K) is Lipschitz continuous

in C, but in general not differentiable everywhere. Suppose that z, z′ belong to

an ε-neighborhood of K, and dĈ\K(z, z′) ≤ L or dC\K(z, z′) ≤ L, respectively.

The geodesic γ from z to z′ is an analytic arc, it is mapped to a circle segment

by Φ. Denote the hyperbolic metric function of Ĉ \ K or C \ K by ρ, it satisfies

ρ(z) ≥ 1/(2δ(z)) by (2.7). Choose R > ε and suppose that γ does not stay within

an R-neighborhood of K. Then there are two arcs γ′, γ′′ contained in γ, each of

which connects a point of distance ε and a point of distance R from K. We have

the Stieltjes integrals

2
∫
γ′

dρ(z) ≥
∫
γ′

|dz|
δ(z)

≥
∫
γ′

|dδ(z)|
δ(z)

≥
∫
γ′

dδ(z)

δ(z)
= log δ

∣∣∣R
ε

= log(R/ε) ,
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and analogously for γ′′. If we choose R = ε exp(L), then γ cannot leave the

R-neighborhood of K, since its length is bounded by L. Now we have ρ(z) ≥
1/(2ε exp(L)) on γ, and with C̃ ∈ {Ĉ, C} we have

L ≥ dC̃\K(z, z′) ≥
∫
γ

|dz|
2ε exp(L)

≥ |z′ − z|
2ε exp(L)

,

thus |z′ − z| ≤ 2εL exp(L), and dist(z′n, ∂K) → 0 yields |z′n − zn| → 0.

2.2 Quasi-Conformal Mappings

There are two equivalent definitions of quasi-conformal mappings. The geometric

definition discussed here yields e.g. properties concerning the boundary behavior of

mappings or normality of families, and the analytic definition discussed in Section 2.3

allows to consider the invariant ellipse fields that are important for surgery. A

standard reference is [LV].

A quadrilateral is a Jordan domain Q with 4 marked points on the boundary. There

is a conformal mapping onto a rectangle with sides a and b, such that the marked

points go to the vertices. Here a/b is a conformal invariant, which defines the

modulus mod(Q) of Q. Now an orientation-preserving homeomorphism ψ : U → V

between domains U, V ⊂ C is called K-quasi-conformal if

1

K
mod(Q) ≤ mod(ψ(Q)) ≤ K mod(Q) (2.8)

for every quadrilateral with Q ⊂ U , it is called quasi-conformal if there is a K ≥ 1

with this property. One sees that the inverse mapping satisfies the same inequal-

ities. Quasi-conformality is a local property, i.e. it is sufficient to consider small

quadrilaterals. The composition of two quasi-conformal mappings with dilatation

bounds K1 and K2 is K1K2-quasi-conformal, and a 1-quasi-conformal mapping is

conformal. A mapping g = h ◦ ψ with ψ K-quasi-conformal and h holomorphic is

called K-quasi-regular, it will be locally K-quasi-conformal except at critical points.

There are analogous characterizations of quasi-conformal mappings by the moduli of

annuli or of curve families, and the latter characterization works also when C = R2

is replaced with Rν , ν ≥ 3, where conformal mappings are less suitable.

A round annulus is of the form 0 ≤ r < |z| < R ≤ ∞, its modulus is defined as

log(R/r) ∈ (0, ∞]. An annulus A is a domain that is homeomorphic to a round

annulus, its complement in Ĉ has two connected components. There is a conformal

mapping onto a round annulus, whose modulus is a conformal invariant and defines

the modulus of A. Suppose that there is a family of disjoint annuli An ⊂ A winding

around the bounded component of C \ A, then we have the Grötzsch inequality∑
n

mod(An) ≤ mod(A) . (2.9)

If A is bounded, then mod(A) = ∞ iff the bounded component of C \ A consists

of a single point. In certain applications this statement is combined with (2.9), one
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shows that the series of moduli diverges and obtains that some set consists of a

single point, see Sections 3.5 and 6.3 for applications.

Many properties of conformal mappings extend to quasi-conformal mappings. There

is no quasi-conformal mapping D → C. If V is a bounded, simply connected domain,

and ψ : D → V is quasi-conformal, then ψ extends continuously to D, iff ∂V is

locally connected. A quasi-conformal mapping between Jordan domains extends to

a homeomorphism of the closures.

Suppose that 0 < r < 1 and A ⊂ D is an annulus separating 0 and r from ∂D. Then

mod(A) is bounded by a function µG(r), which yields the modulus of the Grötzsch

extremal annulus D \ [0, r]. It has a representation in terms of elliptic integrals,

and some functional equations and estimates are given in [LV]. See [A1] for a

product expansion of log µG. If ψ : D → D is K-quasi-conformal with ψ(0) = 0 and

ψ(r) = R, we have µG(r)/K ≤ mod(ψ(D\ [0, r])) ≤ µG(R) and thus R ≤ ϕK(r)

with ϕK(r) := µ−1
G (µG(r)/K) , since µG is decreasing. If U, V are conformal disks

and ψ : U → V is K-quasi-conformal, then for z1, z2 ∈ U the hyperbolic distance is

thus bounded according to

tanh(dV (ψ(z1), ψ(z2))/2) ≤ ϕK(tanh(dU(z1, z2)/2)) . (2.10)

The asymptotics of µG(r) imply that ψ is locally 1/K-Hölder continuous. For all

K-quasi-conformal mappings ψ : D → D with ψ(0) = 0, we have Mori’s Theorem:

|ψ(z1)− ψ(z2)| ≤ 16 |z1 − z2|1/K on D.

The following theorem summarizes some results on normality and convergence prop-

erties of quasi-conformal mappings, see e.g. [LV]. It will be applied in Sections 2.4

and 5.6.3. The proof employs locally uniform Hölder estimates. The kernel of a se-

quence of domains (Vn) contains all points z, such that a neighborhood of z belongs

to almost all Vn .

Theorem 2.2 (Compactness)

Suppose that ψn : U → Vn are K-quasi-conformal and the domains Vn are uniformly

bounded. Then there is a subsequence ψ′n and a mapping ψ : U → C with ψ′n → ψ

pointwise. Now there are two possibilities: either ψ : U → V is K-quasi-conformal,

V is a component of kernel(V ′
n), and the convergence is uniform on compact subsets

of U . Or ψ ≡ const ∈ C\(kernel(V ′
n)∪kernel(C\V ′

n)). In the first case, ψ′n
−1 → ψ−1

uniformly on compact subsets of V . If all Vn = V0 , then V = V0 in the first case,

and const ∈ ∂V0 in the second case.

If ψ is a K-quasi-conformal mapping of the upper halfplane fixing ∞, the boundary

value f on R is increasing and satisfies

1

M
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤ M (x ∈ R, t > 0) , (2.11)

where M ≥ 1 is a constant and bounded in terms of K. Functions f : R → R
with this property are called M -quasi-symmetric. Conversely, every f with this

property extends to a K-quasi-conformal mapping ψ of the upper halfplane, where
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K is bounded in terms of M . Similar results hold for quasi-conformal mappings

between round annuli or disks.

A curve in C is called a quasi-arc or quasi-circle, if it is the image of a line segment

or a circle under a quasi-conformal mapping of a neighborhood. A quasi-conformal

mapping between quasi-disks extends to the plane. A mapping between quasi-circles

will be called quasi-symmetric, if a corresponding mapping between circles has this

property.

2.3 The Analytic Definition of Quasi-Conformal

Mappings

A diffeomorphism ψ between subsets of R2 = C is mapping certain ellipses in the

tangent space to circles, and the dilatation ratio, i.e. the ratio of the semi-axes, is

bounded on compact sets. Now an orientation-preserving homeomorphism ψ : U →
V is called K-quasi-conformal, iff it is weakly differentiable and the dilatation ratio

is bounded globally by K; this analytic definition is equivalent to the geometric

one given in the previous section [LV]. Here we assume that the weak derivatives

exist in L1
loc , which implies that the classical derivatives exist almost everywhere,

and the dilatation ratio shall be bounded by K almost everywhere. If ψ has these

properties, the weak derivatives will in fact belong to L2
loc , which is related to the fact

that every quasi-conformal mapping ψ is absolutely continuous. The composition of

quasi-conformal mappings satisfies the chain rule for derivatives almost everywhere.

For a weakly differentiable orientation-preserving homeomorphism ψ, the Wirtinger

derivatives are obtained from dψ = ∂xψdx + ∂yψdy = ∂ψdz + ∂ψdz, thus we have

2∂ψ := ∂xψ − i∂yψ and 2∂ψ := ∂xψ + i∂yψ. The Beltrami coefficient is given by

µ := ∂ψ/∂ψ, it is a measurable function and bounded by 1. Some authors prefer

to work with the Beltrami differential, a quotient of differential forms. A short

computation shows that |µ| and arg µ are related to the dilatation ratio and the

direction of the semi-axes of the ellipses, that are mapped to circles in the tangent

space by ψ (strictly speaking, by the prolongation T∗ψ of ψ to the tangent space),

see [CG]. In particular ψ is quasi-conformal, iff µ is bounded away from 1 almost

everywhere, i.e. ‖µ‖∞ < 1. Now µ ≡ 0 almost everywhere characterizes conformal

mappings, this weak characterization is obtained from elliptic regularity, or from

the corresponding statement for the geometric definition. The Beltrami coefficient

µ describes a field of infinitesimal ellipses, and we shall see below that one can

prescribe such a field and obtain a quasi-conformal mapping, which is sending these

ellipses to circles. In our applications we will have a quasi-regular mapping g and

an ellipse field µ that is invariant under T∗g, i.e. the ellipse described by µ(z) is

mapped to the ellipse µ(g(z)) by T∗g(z) for almost all values of z. Then ψ ◦ g ◦ψ−1

is sending infinitesimal circles to circles, it is thus analytic.
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Theorem 2.3 (Ahlfors-Bers)

Suppose that µ(z) is a measurable ellipse field with ‖µ‖∞ < 1. There is a unique

quasi-conformal homeomorphism ψ : C → C with ∂ψ = µ ∂ψ and ψ(z) = z + o(1)

for z →∞. If µ vanishes in a neighborhood of ∞, then ψ(z) = z +O(1/z).

If µt(z) depends analytically on t for almost every z ∈ C and ‖µt‖∞ ≤ m < 1, then

t 7→ ψt(z) is analytic for every z ∈ C.

We will use this theorem in Sections 3.7, 4.1 and 4.2. Similar results hold for

mappings from a bounded domain to D (Measurable Riemann Mapping Theorem),

and regarding continuous dependence on parameters. Solvability of the Beltrami

equation was known before, but the parameter dependence is due to Ahlfors and

Bers, for a proof see [AB, A1] or [D7]. For µ with compact support, a proof is given

in [CG] (this case is sufficient for our applications).

2.4 Extension by the Identity

The following two lemmas will be employed to construct a hybrid-equivalence for

item 1 of Proposition 4.2, they might also be of separate interest. The first one deals

with quasi-conformal mappings extending to the identity on ∂D. It is used in [Mu1,

p. 42] without a reference. Thanks to Dierk Schleicher for suggesting various proofs.

We shall take a short, non-constructive proof relying on compactness, but one can

find the explicit bound δ < 2.01K − 1.24 by employing the extremal annulus of

Grötzsch.

Lemma 2.4 (Bounded Hyperbolic Distance)

For every K ≥ 1 there is a δ = δ(K) < ∞ such that for z ∈ D the estimate

dD(z, ψ(z)) ≤ δ is satisfied for every K-quasi-conformal ψ : D → D with ψ(z) = z

on ∂D.

Proof : Conjugating ψ with an automorphism of D does not change the special

boundary values, the dilatation or the hyperbolic distance. Thus it is sufficient to

show dD(0, ψ(0)) ≤ δ(K) for all K-quasi-conformal ψ : D → D with ψ(z) = z on

∂D. If this was wrong, there would be a sequence of mappings ψn , satisfying our

hypotheses and dD(0, ψn(0)) →∞, thus |ψn(0)| → 1. Extend these mappings by the

identity to K-quasi-conformal self-mappings of D2 . By Theorem 2.2, a subsequence

converges locally uniformly to a K-quasi-conformal mapping ψ∞ : D2 → D2 , since it

cannot converge to a constant in D2\D. Now we have ψ∞ : D → D, and |ψ∞(0)| < 1

yields a contradiction.

Suppose that α : U → V is a homeomorphism, E ⊂ U is a point or a rectifiable

curve, and α is quasi-conformal in U \ E. Then E is removable, i.e. α is quasi-

conformal everywhere. Rickmann has considered more general sets E under the

assumption that α|E is the restriction of another quasi-conformal mapping. In the

following lemma, quasi-conformality was shown by Rickmann [Ri], and ∂α = 0 is
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obtained from [Be, Lemma 2], which Bers attributes to Royden. The idea of the

proof below is taken from [DH3, Lemma 2]:

Lemma 2.5 (Rickmann–Bers–Royden)

Suppose that U, V are open neighborhoods of a compact K ⊂ C. If α : U → V

is a homeomorphism with α|K = id, such that the restriction α : U \ K → V \ K
is quasi-conformal, then α is quasi-conformal in U with ∂α = 0 almost everywhere

on K.

Proof : The idea is to approximate α by smoothing in the range. We may assume

that U is bounded. Choose a sequence of smooth mappings ηn : C → C with

|ηn(z)| ≤ |z|, ηn(z) = 0 for |z| < 1/n, ηn(z) = z for |z| > 2/n, and ‖Dηn(z)‖ ≤ 3.

Set αn = id + ηn ◦ (α − id) on U . Then αn ∈ H1(U, C) with ‖αn − α‖∞ < 4/n,

thus αn → α in L∞ and in L2. For every n we have αn = id in a neighborhood of

K, where |α(z)− z| < 1/n. Thus Dαn = Did = I on K. At almost every z0 ∈ U \K
we have

Dαn = I +
(
Dηn ◦ (α− id)

)
· (Dα− I) ,

thus Dαn(z0) → Dα(z0) unless α(z0) = z0∧Dα(z0) 6= I, in which case Dαn(z0) → I.

(Incidently, this can happen only on a null set by [GiTr, Lemma 7.7].) Since Dαn

converges almost everywhere in U \ K and

‖Dαn‖ ≤ 1 + 3‖Dα− I‖ ∈ L2(U \ K, R) ,

the Dominated Convergence Theorem [Ru] shows that the matrices Dαn converge

in L2(U \ K, R2×2) and in L2(U, R2×2). Introducing a test function and integrating

by parts shows that α ∈ H1(U, C) with Dαn → Dα in L2. By [Ru, Theorem 3.12],

a subsequence of (Dαn) converges to Dα almost everywhere in U , thus Dα = I

almost everywhere on K. The dilatation bound of α in U is the same as that of α

in U \ K, thus α is quasi-conformal.

2.5 Extension of Holomorphic Motions

When a set S ⊂ Ĉ moves holomorphically with a parameter λ, the mapping hλ(z)

extends to a quasi-conformal homeomorphism of Ĉ. An example of this kind of

parameter dependence is given by hλ(z) = z + λz, λ ∈ D.

Proposition 2.6 (λ-Lemma)

Suppose that Λ ⊂ C is a conformal disk, λ0 ∈ λ and S ⊂ Ĉ. A holomorphic

motion of S is a family of mappings hλ : S → Ĉ, λ ∈ Λ, such that hλ0 = id, hλ is

injective on S, and λ 7→ hλ(z) is holomorphic on Λ for z ∈ S. Now hλ extends to

a holomorphic motion of Ĉ, and for λ ∈ Λ, hλ : Ĉ → Ĉ is quasi-conformal. The

dilatation is bounded in terms of the hyperbolic distance, K ≤ exp{dΛ(λ, λ0)/2}.

Now (z, λ) 7→ hλ(z) is continuous, and it is surprising that no continuity of z 7→
hλ(z) on S is assumed a priori. A weaker version of the λ-Lemma appeared in [MSS]
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and in a paper by Lyubich, here hλ was only extended to S, and it is quasi-conformal

on this arbitrary closed set in a generalized sense. The best-possible result above

was obtained by S lodkowsky [Sl], building on results of [BeRn, SuTh], see also [D6].

We will employ the λ-Lemma in Sections 3.7, 4.3 and 5.6.3.

2.6 Iteration of Rational Functions

Suppose that f : Ĉ → Ĉ is a rational function of degree d ≥ 2 and denote its

iterates by fn. Cayley and others started to work in complex dynamics e.g. to

understand Newton’s method for finding roots of polynomials by iteration. A major

breakthrough was achieved in the 1920’s by Fatou and Julia, building in particular

on Montel’s Theorem about normal families. The dynamics is stable on the open

Fatou set F , where the sequence of iterates forms a normal family, and it is chaotic

on the closed Julia set J . The latter is the complement of the Fatou set, and the

closure of the repelling periodic points. The sequence of iterates omits at most two

values in a neighborhood of a point in J , and both F and J are completely invariant

under f [CG]. Thus there are non-linear similarities between subsets of J , which

are asymptotically linear at many points.

A second (and older) approach to understand the dynamics locally deals with peri-

odic points. z0 is p-periodic, iff fp(z0) = z0 and p is the smallest integer with this

property. Preimages of z0 are preperiodic. The multiplier of the cycle z0, f(z0), . . .

is given by the derivative ρ = (fp)′(z0), it is the same for all points in the cycle. The

following cases occur:

• |ρ| < 1, the cycle is attracting and belongs to F . The boundary of the at-

tracting basin is given by J , which shows that J must be complicated if there

are several attracting cycles. If ρ = 0, the cycle is superattracting. There is

a local conjugation from fp to some normal form: z 7→ ρz if ρ 6= 0, see (3.1),

(3.2) for the case of ρ = 0.

• |ρ| = 1 and ρ is a root of unity. Then the cycle is called rationally indifferent

or parabolic, it belongs to J , and it is slowly attracting in certain directions

and repelling in other directions, see [CG, Mi2] for a normal form.

• |ρ| = 1 and ρ is not a root of unity, the cycle is irrationally indifferent. In the

Siegel case, fp is locally conjugate to a rotation, and in the Cremer case it is

not. There are number theoretic conditions for these types of behavior, which

are understood completely only in the case of quadratic polynomials.

• |ρ| > 1, the cycle is repelling and belongs to J . Since there are infinitely many

repelling cycles, J is never empty. Again there is a local conjugation from f

to z 7→ ρz, cf. the example in Section 8.4.

The Classification Theorem says that every periodic Fatou component belongs to the

attracting basin of an attracting or parabolic cycle, or to a cycle of rotation domains
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(Siegel disks and Herman rings). Sullivan [Su2] has completed the classification by

showing that every component of F is periodic or preperiodic. The field of complex

dynamics has become active again since the 1980’s, motivated by Sullivan’s use of

quasi-conformal mappings and by the advances in Computer graphics.

A third approach to understand the global dynamics relies on the critical orbits,

e.g. it is known that every attracting or parabolic cycle attracts a critical point,

and a critical orbit is accumulating at the boundary of a Siegel disk. See [CG]

for estimates on the number of non-repelling cycles. Some of these are obtained by

quasi-conformal surgery, see also Section 4.1. f is called hyperbolic, if it is expanding

on the Julia set with respect to a smooth metric, or equivalently, if every critical

point is attracted to an attracting cycle [CG, Mu2].

Suppose that fλ is a family of functions depending on a parameter, then a qualitative

change in the dynamics by variations of the parameter is a bifurcation. Basic results

on structural stability were obtained in [MSS]. The iteration of transcendental entire

or meromorphic functions, and of functions on Cν , is studied as well.
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3 The Mandelbrot Set

We shall discuss many known results on the iteration of quadratic polynomials and

the Mandelbrot set. Most of these will be needed in the sequel. Renormalization of

quadratic polynomials is considered in Chapter 4.

3.1 Iteration of Quadratic Polynomials

If f : Ĉ → Ĉ is a polynomial of degree d ≥ 2, it has a superattracting fixed

point at ∞. The attracting basin is connected by the Maximum Principle, thus its

complement Kf is compact and full. The Julia set satisfies Jf = ∂Kf , therefore

Kf is called the filled-in Julia set. Usually f is considered as a mapping C → C.

There are d − 1 critical points in the finite plane (counting multiplicities), and f

has at most d − 1 non-repelling cycles in C, cf. page 57. The interesting dynamics

happens onKf , which is more important than Jf in many situations. When studying

the iteration of polynomials, it is sufficient to consider affine conjugacy classes. A

straightforward argument shows that every quadratic polynomial is affine conjugate

to a unique polynomial of the form z2 + c. This parametrization will be used for the

definition of the Mandelbrot set, which is a subset of the parameter-c-plane.

Definition 3.1 (Quadratic Polynomials)

1. Every quadratic polynomial is affine conjugate to fc(z) = z2 + c for a unique

parameter c ∈ C . The critical point of fc is 0 , and the parameter c is at the same

time the critical value of fc .

2. For c ∈ C \ [1/4, +∞) , the fixed points of fc are αc := 1/2 −
√

1/4− c

and βc := 1/2 +
√

1/4− c , with the usual principal value of the square root. See

Section 3.3 for a qualitative characterization of these points.

3. The filled-in Julia set Kc of fc consists of all z ∈ C whose orbit under fc is

bounded, it is compact and full. The Julia set is Jc = ∂Kc .

Fix c ∈ C and set Ωc :=
{
z ∈ Ĉ

∣∣∣ |z| > 1/2+
√

1/4 + |c|
}

. Then Ωc is an fc-invariant

neighborhood of ∞ and fn
c (z) →∞ for z ∈ Ωc , thus Kc ⊂ Ĉ \ Ωc . For z ∈ Ωc , the

holomorphic mapping Φc : Ωc → Ĉ with

Φc(z) := z
∞∏

n=1

2n
√

1 +
c

[fk−1
c (z)]2

(3.1)
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is well-defined, it satisfies Φc(z) = z +
c

2z
+O(1/z3) = z +O(1/z) for z → ∞ and

conjugates fc to F (z) := z2 :

Φc ◦ fc = F ◦ Φc . (3.2)

Φc is the Boettcher conjugation for the superattracting fixed point at ∞. We have

Φc(z) = lim
n→∞

2n
√
fn

c (z) for a suitable choice of the root, thus Φc is constructed in a

similar way as a wave operator in scattering theory, and (3.2) is an “intertwining

relation”.

We want to continue Φc analytically to a larger domain. (3.2) will still be satisfied,

and in fact this relation is employed for the extension. Consider the Green’s function

Gc : C \ Kc → R, which is given by Gc(z) := log |Φc(z)| in Ωc and is defined

recursively such that it satisfies Gc(fc(z)) = 2Gc(z) everywhere. We have Gc(z) → 0

for z → ∂Kc , thus Gc is extended continuously by Gc(z) := 0 on Kc . Now Gc is

harmonic in C \ Kc and Gc(z) = log |z|+O(1/z), thus it is the Green’s function of

Kc in the sense of Section 2.1. One can show that Gc is subharmonic and Hölder

continuous in C. If 0 ∈ Kc , the equipotential lines Gc(z) = const > 0 are simple

closed curves, and Kc is connected. We shall see below that Φc can be extended to

a conformal mapping Ĉ \ Kc → Ĉ \ D in this case. If fn
c (0) →∞, thus 0 /∈ Kc , Gc

has saddle-points at 0 and its preimages under fc . The equipotential line through

z = 0 will be a figure-8, and every point of Kc is enclosed in a nested sequence of

such figure-8 curves, thus Kc is disconnected. The extension of Φc will break down

at the critical point z = 0 in this case. See [CG, Section III. 4] or [B2, p. 49] for

a proof that Kc is totally disconnected, and for the generalization to higher-degree

polynomials.

Items 1 and 2 of the following proposition are basic for the Definition 3.6 of the

Mandelbrot set, and item 3 or 4 will be needed in Sections 4.2 and 5.4:

Proposition 3.2 (Connectedness of Kc and Domain of Φc)

The Boettcher mapping Φc is conjugating fc to F (z) = z2 in a neighborhood Ωc of

∞, it is determined uniquely there.

1. If
(
fn

c (0)
)

is bounded, then Φc extends to a conformal mapping Ĉ \ Kc → Ĉ \ D.

In particular, Kc is connected if 0 ∈ Kc .

2. If fn
c (0) → ∞, or 0 /∈ Kc , then Kc is totally disconnected, and Φc cannot be

extended to all of Ĉ \ Kc . But Φc(c) is defined uniquely.

3. If Nc is a compact, connected, full set with f−1
c (Nc) ⊂ Nc and Kc ⊂ Nc , then Φc

has a unique analytic extension to Ĉ \Nc . If Nc = −Nc then Φc is conformal.

4. Suppose that Kc is disconnected and that N ⊃ D is a compact, connected, full set

with F−1(N) ⊂ N , ±
√

Φc(c) ∈ N and N = −N . Then Φ−1
c has a unique conformal

extension to Ĉ \N .

Proof of Proposition 3.2:

3.: For z0 ∈ C \ Nc , choose an arc γ in Ĉ \ Nc from z0 to ∞. There is an n with

fn
c (γ) ⊂ Ωc . Now Φc is defined recursively on fn−1

c (γ), fn−2
c (γ), . . . , fc(γ), γ by
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Φc(z) = ±
√

Φc(fc(z)). There is a unique continuous choice of the branch of the

square root (we have |Φc(z)| > 1). This extension of Φc to γ coincides with the

analytic continuation along γ. Now Ĉ\Nc is simply connected, and the Monodromy

Theorem guarantees the unique extension of Φc .

By the chain rule, Φc has critical points at 0 and its preimages under fc , if 0 /∈ Nc .

If Φc is not injective, iterating (3.2) yields a z0 with Φc(z0) = Φc(−z0). This cannot

happen if Nc = −Nc: then we may choose ±γ from ±z0 to ∞, and by continuity we

have Φc(−z) = −Φc(z) on γ.

1.: The discussion of Gc above showed that Kc is connected. Apply item 3 with

Nc = Kc to obtain the extension of Φc . For z → ∂Kc we have |Φc(z)| → 1, thus Φc

is proper, i.e. it has a mapping degree. It is injective around ∞ and thus a conformal

mapping onto Ĉ \ D.

2.: We have remarked above that Kc is totally disconnected. Now the figure-8

curve Gc(z) = Gc(0) bounds a compact, connected, full set Nc , and Φc can be

extended to Ĉ \ Nc = {z |Gc(z) > Gc(0)}, which contains the critical value c since

Gc(c) = 2Gc(0). Φc(z) has different limits when z → 0 through different accesses in

Ĉ \Nc .

4.: Note that Φc(c) is well-defined by item 2, and that F n(z) → ∞ in Ĉ \ D. The

proof of item 3 is copied, where Φ−1
c is pulled back by Φ−1

c (z) = ±
√

Φ−1
c (z2)− c 6= 0.

Again we have Φ−1
c (−z) = −Φ−1

c (z) on an arc γ from z0 to ∞, which implies that

Φ−1
c is injective.

A maximal extension is obtained by constructing N as the “hedgehog” [BuHe, Le]:

it contains D, radial line segments from ∂D to ±
√

Φc(c), and all of their preimages

under F .

Definition 3.3 (External Rays)

The Boettcher mapping Φc and the Green’s function Gc for fc(z) = z2 + c have been

defined above.

1. For potentials w > 0, an equipotential line is given by {z ∈ C |Gc(z) = w}. If

w > Gc(0), it is a simple closed curve in the domain of Φc , equivalently given by{
z ∈ C

∣∣∣ |Φc(z)| = ew
}
. See Figure 1.

2. For θ ∈ S1 = R/Z, R(θ) := {z | arg(z) = 2πθ, |z| > 1} shall denote a straight

ray. If Kc is connected, Φc : Ĉ \ Kc → Ĉ \ D is conformal, and external rays of

Kc are defined by Rc(θ) := Φ−1
c (R(θ)) = {z ∈ C \ Kc | arg(Φc(z)) = 2πθ}, they are

sometimes called dynamic rays.

3. If Kc is connected, z0 ∈ ∂Kc and z0 = lim
r↘1

Φ−1
c (rei2πθ), then Rc(θ) is landing at

z0 , and θ is an external angle of z0 . We write z0 = γc(θ).

The limit set of an external ray is always a non-empty compact connected subset of

Jc , and the ray is landing, iff the limit set consists of a single point. The following

proposition shows why angles are measured in turns instead of radians: (3.2) implies

fc(Rc(θ)) = Rc(2θ), thus a ray is periodic or preperiodic under fc , iff θ is periodic or

preperiodic under doubling (mod 1), i.e. iff θ is rational. Rational dynamic rays are

37



landing at (pre-)periodic points in ∂Kc , thus these points can be characterized by

rational angles, and the dynamics of fc on Kc and the topology of Kc has a (partial)

combinatorial description.

Proposition 3.4 (Landing of Dynamic Rays)

If Kc is connected and θ ∈ R/Z, then fc(Rc(θ)) = Rc(2θ). If Rc(θ) is landing at

z0 , then Rc(2θ) is landing at fc(z0).

1. θ ∈ R/Z is rational with odd denominator, iff it is periodic under doubling

(mod 1), iff its sequence of binary digits is periodic, and iff Rc(θ) is periodic under

fc . Then Rc(θ) is landing at a repelling or parabolic periodic point in Jc . Con-

versely, every periodic point of this kind has a positive finite number of external

angles, all of which are periodic.

2. θ ∈ R/Z is rational with even denominator, iff it is (strictly) preperiodic under

doubling (mod 1), iff its sequence of binary digits is preperiodic, and iff Rc(θ) is

preperiodic under fc . Then Rc(θ) is landing at a preperiodic point in Jc , and the

corresponding periodic point is repelling or parabolic. Conversely, every preperiodic

point of this kind has a positive finite number of external angles, all of which are

preperiodic.

References for a proof : θ ∈ Q/Z can be written as θ =
q

2k(2n − 1)
with minimal k

and n, which are the preperiod and period of θ under doubling. The preperiod of

the landing point is then k, but the period may be a proper divisor of n. For an n-

periodic angle θ, consider the hyperbolic metric (2.6) in C \Kc . The corresponding

mapping F in C \ D yields dC\Kc(z, f
n
c (z)) = n log 2 on Rc(θ). If z0 ∈ ∂Kc is a

cluster point of Rc(θ), there are zj ∈ Rc(θ) with zj → z0 . Since the hyperbolic

distances dC\Kc(zj, f
n
c (zj)) are bounded, Theorem 2.1 yields fn

c (zj) → z0 , thus z0 is

periodic with period dividing the ray period n. These points are discrete and the

limit set is connected, thus Rc(θ) is landing at z0 . For a proof that z0 is repelling or

parabolic, and the converse statement, see [Mi2, H1, Pe1] and the references therein.

It is not clear whether a Cremer periodic point has external angles, but these must

be irrational [SZ, Z1].

If Kc is not connected, external rays can be defined in a similar way but some rays

are branching at z = 0 or at its preimages. This happens to Rc(θ), if some iterate of

θ equals the external argument of c, i.e. the argument of Φc(c). Every non-branched

ray is landing at Jc = Kc . Suppose that a ∈ C and a periodic ray is landing

at a repelling periodic point za of fa , then za has an analytic continuation to a

periodic point zc of fc for parameters c in a neighborhood of a, and the corresponding

ray keeps landing at zc , and does not branch in particular [GoMi, S4, T4]. See

Sections 3.3 and 3.4 for a more detailed discussion of landing properties and of the

bifurcation of landing points.

If fc has an attracting or parabolic cycle, then Kc is connected and locally connected.

If fc has an irrationally neutral cycle, then either Kc contains a cycle of Siegel disks,

or it is not linearizable (Cremer cycle). There are necessary and sufficient conditions
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for these cases in terms of the continued fraction expansion of the rotation number,

the proof was completed by Yoccoz. If the number is Diophantine of bounded type,

the Siegel disks are locally connected [Pe2, S3]. A Cremer Julia set is not locally

connected.

If Kc is connected and all cycles of fc are repelling or of Cremer type, then Kc =

Jc has empty interior, since there are no Herman rings or wandering domains for

polynomials. There is no classification of these polynomials. An important case

is that of a Misiurewicz map, here the critical point and critical value are strictly

preperiodic, and then the corresponding periodic cycle is repelling. The Julia set is

locally connected.

Example 3.5 (Quadratic Polynomials)

1. If fn
c (c) →∞, Kc = Jc is a Cantor set, not connected and not locally connected.

fc is hyperbolic, iff either fn
c (c) →∞ or there is an attracting cycle in C.

2. For −2 ≤ c ≤ 1/4, the interval [−βc, βc] is invariant under fc and thus contained

in Kc , which is connected. For c < −2, Kc ⊂ R is a Cantor set, and for c > 1/4, Kc

is disjoint from R, thus disconnected and a Cantor set again.

3. For c = α− α2 with |α| < 1/2, the fixed point αc of fc is attracting, and Kc is a

quasi-disk [CG]. For |4(c+ 1)| < 1, the 2-cycle of fc is attracting.

4. For c = 0, the Julia set of f0(z) = z2 is the unit circle. The Boettcher conjugations

both at 0 and at ∞ are the identity, and we have γ0(θ) = ei2πθ. The conjugation

for the repelling fixed point 1 is given by log z.

5. For c = −2 the critical value has preperiod and period 1, z2 − 2 is a Misi-

urewicz polynomial. The Julia set is [−2, 2], and the polynomial is affine conju-

gate to a Tchebycheff polynomial, thus all iterates, periodic points and conjuga-

tions are obtained explicitly. We have fc(z) = 2 cos(2 arccos z/2) for −2 ≤ z ≤ 2

and fc(z) = 2 cosh(2 arcosh z/2) for z ≥ 2, and the conjugation to a tent map

fc(z) = 2 cos(g(arccos z/2)) with g(x) = 2x for 0 ≤ x ≤ π/2 and g(x) = 2π− 2x for

π/2 ≤ x ≤ π. The Boettcher conjugation is obtained from the limit after (3.2), we

have

Φc(z) = z/2 +
√
z2/4− 1 Φ−1

c (z) = z + 1/z γc(θ) = 2 cos 2πθ . (3.3)

The Koenigs conjugation at the repelling fixed point βc = 2 is given by

φc(z) = (arcosh z/2)2 = −(arccos z/2)2 φ−1
c (z) = 2 cosh

√
z = 2 cos

√
−z ,

(3.4)

it will be applied in Sections 8.5 and 8.6. Note that φ−1
c is an entire function.

z2 and z2−2 are the only cases where the sets and conjugations are known explicitly.

z2 + i is a Misiurewicz polynomial with a simple parameter, but the Julia set and

the conjugations are not explicit.
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3.2 The Mandelbrot Set

The Mandelbrot set M contains the parameters c, for which the filled-in Julia set

Kc of fc(z) = z2 + c is connected. By Proposition 3.2, this is equivalent to 0 ∈ Kc ,

or fn
c (0) 6→ ∞. A related set was considered first by Brooks and Matelski in [BsMt].

The investigation of the structure of M was pioneered by Adrien Douady and John

Hamal Hubbard around 1981–1985 in a series of papers [DH1, D1, DH2, DH3, D2,

D3, D4]. They named M after Benôıt Mandelbrot, who discussed images of M in

[Mb], and observed e.g. that M contains many small copies of itself, cf. Section 4.3.

See Hubbard’s preface to [T3] for a lively recount of that period, and [B1] for a

readable introduction to the theory.

Definition 3.6 (Mandelbrot Set)

1. The Mandelbrot set is the set of parameters c ∈ C, such that Kc is connected, or

equivalently, such that fn
c (0) 6→ ∞.

2. A parameter c is called a center of period n, if fc has a superattracting n-cycle. c is

a root, if fc has a parabolic cycle. If the critical value c of fc is strictly preperiodic

with preperiod k, then the parameter c is a Misiurewicz point of order k. If the

corresponding repelling cycle is the fixed point αc or βc of fc , then c is an α-type or

β-type Misiurewicz point.

3. The holomorphic mapping ΦM : C \ M → C \ D is defined by means of the

Boettcher conjugation, ΦM(c) := Φc(c) = c + 1/2 + O(1/c). The Green’s function

of M is given by GM : C → R, GM(c) := Gc(c).

Centers belong to the interior ofM, roots and Misiurewicz points belong to ∂M. See

Section 3.3 for the relation to hyperbolic components. The first item of the following

proposition is elementary, cf. Example 3.5, and the third item is obtained from a

normality argument. Gc(z) is continuous for (c, z) ∈ C2 [CG], thus |ΦM(c)| → 1

for c → ∂M. Now ΦM is proper and therefore conformal, since it is injective

around ∞, which shows that M is connected. We have GM(c) = 0 for c ∈ M and

GM(c) = log |ΦM(c)| > 0 for c /∈M, thus GM is the Green’s function in the sense of

Section 2.1.

Proposition 3.7 (Basic Properties of the Mandelbrot Set)

1. We have c ∈M iff |fn
c (c)| ≤ 2 for all n. M is compact and full, it intersects the

real line in [−2, 1/4], and it contains the main cardioid
{
c = α− α2

∣∣∣ |α| < 1/2
}
.

2. ΦM : C \M → C \ D is conformal, and M is connected.

3. Centers are dense at ∂M, thus M is the closure of its interior. Roots and

Misiurewicz points are dense in ∂M.

∂M is the bifurcation locus of the quadratic family [MSS, D6, Mu4]: suppose that

Ω is a component of C \ ∂M. Then the dynamics of fc is structurally stable for

c ∈ Ω, in the sense that
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• In the Hausdorff topology (cf. Section 8.4), the sets Jc and Kc move continu-

ously with c ∈ Ω.

• For c1, c2 ∈ Ω, there is a quasi-conformal conjugation from a neighborhood

of Jc1 to a neighborhood of Jc2 . When centers are excluded, the conjugation

extends to the plane.

• The number of attracting cycles of fc is constant (0 or 1) for c ∈ Ω.

• The family of iterates of the critical point,
(
c 7→ fn

c (0)
)
, is normal on Ω.

If a ∈ ∂M, none of these properties is satisfied in a neighborhood of a. In particu-

lar, fa is not quasi-conformally conjugate to any other fc in a neighborhood of Ka

(Section 4.1). Kc and Jc move discontinuously for c → a, if a is a root [D5]. If

a ∈ ∂M is such that fa does not have a neutral cycle, then c 7→ (Kc, Jc) is con-

tinuous at c = a but not in a neighborhood of a. The perturbation of a parabolic

polynomial is described analytically by the theory of “parabolic implosions”, see

[DH2, DBDS, Sh4, T4]. In this context one obtains landing properties of periodic

parameter rays, little Mandelbrot sets accumulating at a root, and the fact that ∂M
has Hausdorff dimension 2 [Sh3].

Definition 3.8 (External Rays)

1. For potentials w > 0, an equipotential line is a simple closed curve, given by

{c ∈ C |GM(c) = w} or
{
c ∈ C \M

∣∣∣ |ΦM(c)| = ew
}
, cf. Figure 1.

2. For θ ∈ S1 = R/Z, R(θ) := {z | arg(z) = 2πθ, |z| > 1} shall denote a straight

ray. Now RM(θ) := Φ−1
M (R(θ)) = {c ∈ C \ M| arg(ΦM(c)) = 2πθ} defines an

external ray of M (or a parameter ray).

3. If c0 ∈ ∂M and c0 = lim
r↘1

Φ−1
M (rei2πθ), then RM(θ) is landing at c0 , and θ is an

external angle of c0 . We write c0 = γM(θ).

The landing properties of parameter rays have been obtained by Douady and Hub-

bard in [DH2] by elaborate analytical arguments, see also [CG, T4, PeRy]. Schleicher

[S4] and Milnor [Mi3] have given simplified proofs, which rely on landing properties

in the dynamic plane and on combinatorial arguments: suppose that θ is n-periodic

and a ∈ ∂M is a cluster point of RM(θ). Then the dynamic ray Ra(θ) is landing at

a repelling or parabolic point z1 ∈ ∂Ka , whose period divides the ray period n. If

z1 was repelling, then Rc(θ) would land at ∂Kc for c in a neighborhood of a, cf. the

remark after Proposition 3.4. But Rc(θ) is branched for c ∈ RM(θ), thus z1 must

be parabolic, and a is a root. The limit set of RM(θ) is connected and there are

only finitely many roots, such that the period of the corresponding parabolic cycle is

dividing n, thus RM(θ) is landing at a. Now z1 has at least two external angles, and

one can show that Ra(θ) is one of the two rays bounding the sector that contains

the critical value a, thus at most two periodic parameter rays are landing at the

root a. By a global counting argument, a has exactly two periodic external angles.
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Here 0 = 1 is counted twice for n = 1. The landing of preperiodic parameter rays is

shown analogously, see [S4, Mi3, Eb] for details.

Theorem 3.9 (Landing of Parameter Rays)

1. If θ ∈ Q/Z is n-periodic under doubling, then RM(θ) is landing at the root of a

hyperbolic component of period n. Conversely, every root has exactly two external

angles, and these are periodic.

2. If θ ∈ Q/Z is preperiodic, then RM(θ) is landing at a Misiurewicz point. Every

Misiurewicz point c has a positive finite number of external angles, and these are

preperiodic. In the dynamic plane of fc , the critical value c has the same external

angles.

These landing properties will be discussed further in Sections 3.3 and 3.4. The

following proposition will be employed in Sections 5.6.4, 7.2 and 8.1, the statements

are discussed in greater detail for the example of a = γM(9/56) in Sections 8.4

and 8.5.

Proposition 3.10 (Scaling Behavior at Misiurewicz Points)

Consider a Misiurewicz point a of preperiod k and period p. The corresponding

repelling p-cycle of fa shall have the multiplier ρa , and the ray period shall be rp.

1. ρn
a(M− a), n → ∞, converges in Hausdorff-Chabauty distance to a set Ya , the

asymptotic model of M at a, which is self-similar under multiplication with ρa .

2. On every branch A of M at a, there is a sequence of roots cn , whose periods grow

by rp, and which converge geometrically to a, cn = a + Kρ−rn
a + O(nρ−2rn

a ). The

diameter of the corresponding little Mandelbrot sets is of the order |ρa|−2rn. This

sequence can be chosen such that cn+1 is separating cn from a, and such that there

is no root of lower period on the arc from cn to a.

3. Define Sj as the connected component of M between suitable pinching points c′j
and c′j+1 , then we have R1|ρa|−rj ≤ |c − a| ≤ R2|ρa|−rj for c ∈ Sj . For θ ∈ Q,

|γM(θ) − a| is of the order |θ − Θ|δ, where Θ is an external angle of a and δ =

log |ρa|/ log 2p, since external angles of the points c′j are of the order Θ +O(2−rpj).

References for a proof : Item 1 is due to Tan Lei [DH2, T1], and item 2 is found in

[EE, DH3]. The sequence of pinching points (c′j) is obtained analogously to item 2.

Item 1 yields the scaling properties of the sets Sj , which yield the estimate for γM

in turn. The Pommerenke-Levin-Yoccoz inequality [H1, Le, Pe1] shows that δ ≤ 2

if a has only one external angle, and δ ≤ 1 otherwise. In Sections 8.4 and 8.5 we

will give more details of the proof for the example of a = γM(9/56), and discuss the

resemblance of M and the Julia set Ka .

3.3 Cycles and Hyperbolic Components

We shall describe hyperbolic components of M and the dynamics of quadratic poly-

nomials with attracting or parabolic orbits. For proofs see e.g. [S4, Mi3] and the
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references therein. The results are related to the landing properties of periodic pa-

rameter rays: one can prove the latter by a global counting argument for roots, and

later on give a combinatorial proof for the parametrization of hyperbolic components

by the multiplier map. Or one can obtain the parametrization from quasi-conformal

surgery [D1, CG].

Suppose that fa has an attracting p-cycle. For parameters c in a neighborhood of a,

a periodic point zc in the cycle and the multiplier ρ(c) := (fp
c )′(zc) vary analytically,

and one obtains a component Ω of the interior of M, such that zc is analytic on

Ω and ρ : Ω → D is conformal. Ω is called a hyperbolic component, because fc is

hyperbolic in the sense of Section 2.6, iff c /∈M or fc has an attracting cycle. Every

hyperbolic component contains a unique center c0 , which satisfies ρ(c0) = 0. The

multiplier map extends continuously to ∂Ω, and when fc has a every neutral cycle,

then c is on the boundary of a hyperbolic component. The root c1 of Ω is defined

by ρ(c1) = 1, and every parabolic parameter is the root of a unique hyperbolic

component, it is separating that component from c = 0 (if p > 1).

See Definition 3.12 for the notion of connected components before and behind a

pinching point. Suppose that fa has a parabolic periodic point za and that p is the

smallest integer, such that the period of za is dividing p and such that (fp
a )′(za) = 1.

Then the ray period of za is p, and a is the root of a hyperbolic component Ω of

period p, it shall have the external angles θ± in the parameter plane. The hyperbolic

component is behind a, and we have γc(θ−) = γc(θ+) for c = a and c behind a but

not before a. The equation fp
a (z) = z has a degenerate solution at z = za , and one

can show that only two cases occur:

• za is p-periodic, and two p-cycles coincide for c = a. They are both repelling

for c before a, both parabolic for c = a, and for c ∈ Ω one cycle is attracting

and the other one is repelling. The latter cycle now has inherited both p-cycles

of external angles, i.e. each point of the cycle has two external angles and the

ray period is p. The cycles do not depend analytically on c, since an analytic

continuation along a curve around a is interchanging them. In this case the

root a ∈ ∂Ω is not on the boundary of another hyperbolic component, and Ω

is called a primitive component.

• The period of za is p′ = p/m for some m > 1. At c = a, a p-cycle is collapsing

and coincides with a p′-cycle. The hyperbolic component Ω of period p is

attached to a hyperbolic component Ω′ of period p′ at a, and the multiplier

of the p′-cycle is a primitive p′-th root of unity. Now Ω is called a satellite

component, it is obtained from Ω′ through an m-tupling bifurcation. For c ∈
Ω′, the p′-cycle was attracting, and the points in the p-cycle had one external

angle each. For parameters c in and behind Ω, the p′-cycle has inherited these

angles, each point has m accesses which are permuted cyclically by fp′
c .

Conversely, if the multiplier map for a hyperbolic component of period p′ yields

an m-th root of unity, an m-tupling bifurcation takes place at this parameter value.
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This type of bifurcation is the only situation, where two hyperbolic components have

a common boundary point. In both the primitive and the satellite case, the Julia

set of fc , c ∈ Ω, has the following properties: there is a p-cycle of Fatou components

containing the attracting cycle and the critical orbit. There is a unique repelling

point z1 of period dividing p on the boundary of the Fatou component containing

the critical value c. The dynamic rays with angles θ± are landing at z1 , and no

iterate of z1 is behind z1 . z1 is called a characteristic periodic point. If z1 has more

than two external angles, θ± are those closest to the Fatou component containing c,

they are the characteristic angles. The topology of Kc and the pattern of rational

rays landing together do not change for c ∈ Ω.

Figure 3.1: Various filled-in Julia sets Kc for centers of period dividing 6. Top left: the
center c of period 2, Kc is the “basilica”. Middle: the center of period 3 in M1/3 , Kc is
the “rabbit”. Right: period 6 in M1/6 . In these three cases, the corresponding hyperbolic
components are bifurcating directly from the main cardioid.
Bottom left: period 6 bifurcating from period 2, every closed Fatou component of the
basilica is replaced with a little rabbit, cf. Section 4.3. Middle: period 6 bifurcating from
period 3 by period-doubling, every closed Fatou component of the rabbit is replaced with
a little basilica. Right: a primitive period 6, in the limb M1/5 .

For every hyperbolic component Ω and t ∈ S1 = R/Z, the point a = γΩ(t) ∈ ∂Ω is

defined by ρ(a) = ei2πt. For a fraction t = k/m, γΩ(t) is the point of an m-tupling

bifurcation. The part of M behind a is the k/m-sublimb of Ω. The k/m-limb Mk/m

of M is obtained by disconnecting M at the corresponding point on the boundary of

the main cardioid, where ρ(a) = 2αa = ei2πk/m, it shall contain the root point and

the parameters behind it. The fixed point βc is repelling and the landing point of

Rc(0) for all parameters c ∈M\{1/4}. The other fixed point αc is attracting for c

in the main cardioid. For c ∈Mk/m , αc has m external angles, which are permuted

cyclically under doubling, and it is parabolic at the root of the limb and repelling

otherwise. Every root a 6= 1/4 is disconnecting M into two components, and there
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are exactly two external rays landing at a. We collect some of these notions in the

following definition. See Section 4.3 for a discussion of tuning, i.e. there is a little

copy of the Mandelbrot set attached to each root.

Definition 3.11 (Multiplier Map, Limbs, Characteristic Points)

1. If fc has an attracting cycle in C, then this cycle is unique. The set of these

parameters consists of a countable family of connected components, which are called

hyperbolic components of M. If Ω is a hyperbolic component, then the period is

constant on Ω, the attracting cycle varies analytically with c ∈ Ω, and the multiplier

map ρ : Ω → D is conformal. The root and the center of Ω are obtained for ρ(c1) = 1

and ρ(c0) = 0, respectively.

2. If a ∈ ∂Ω satisfies ρ(a) = exp(i2πk/m), the part of M behind a is the k/m-

sublimb of Ω, and the external rays landing at a bound the k/m-subwake of Ω. The

wake of Ω is bounded by the external rays landing at the root of Ω.

3. The sublimbs of the main cardioid are called limbs of M. For c ∈ Mk/m , the

fixed point αc has the combinatorial rotation number k/m.

4. For c ∈ M, every repelling or parabolic cycle of fc contains a unique point z1 ,

that is separating the critical value c from the other points in the cycle. It is called

the characteristic point of the cycle.

We shall mention some related topics, which will not be needed in the sequel: the

external angles at the roots of the limbs are obtained from Douady’s algorithm [D2],

the remaining external angles of the main cardioid form a Cantor set of measure 0.

Schleicher has given an algorithm employing Farey addition. Atela [At] has given

another characterization of these angles and discussed the bifurcation of dynamic

rays, as the parameter crosses a parameter ray in the exterior of M. We have the

factorization fn
c (z) − z =

∏
p|n gp(z, c) for the cycles of exact period p, and there

are recursion relations for the number of cycles or hyperbolic components of a given

period p. Several authors have obtained polynomial equations for the multiplier

maps, cf. the references in [J1].

3.4 Correspondence of Landing Patterns

The pattern of rational rays landing together at Kc or M allows to disconnect these

sets into well-defined components.

Definition 3.12 (Pinching Points and Branch Points)

Suppose that either K = Kc for some c ∈ M or that K = M, in particular K is

compact, connected and full.

1. If z ∈ K and K \ {z} is disconnected, then z is a pinching point of K, and the

connected components of K \ {z} are the branches of K at z. The branches not

containing 0 are the branches behind z, and the branch containing 0 is before z.
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2. z1, z2 ∈ K are separated by z, if z is a pinching point of K and z1, z2 belong to

different branches of K at z.

3. The partial order ≺ on the set of pinching points is defined such that z1 ≺ z2 , if

z1 is separating z2 from 0.

4. A pinching point with at least three branches is called a branch point.

Usually we will construct pinching points and branch points by observing that we

are in a certain wake and by employing the correspondence from Proposition 3.14

below. In some situations the following results are useful, see e.g. Section 4.4. In

particular, branch points are landing points of rational rays in many cases:

Theorem 3.13 (Branch Points)

1. Every pinching point z of a non-degenerate, compact, connected, full set K is the

landing point of as many external rays as there are branches of K at z.

2. If Kc is connected and z ∈ ∂Kc is a branch point, then z is periodic, preperiodic

or a preimage of c. (There are no “wandering triangles”.)

3. Suppose that c1, c2 ∈ M are two postcritically finite parameters, such that none

is behind the other one. Then there is either a unique Misiurewicz point c0 such that

c1, c2 are in different branches behind c0 , or there is a unique hyperbolic component

Ω such that c1, c2 are in different sublimbs of Ω. (“Branch Theorem”)

Remarks and references for a proof :

1.: Note that local connectivity is not assumed. The result is proved in [Mu3, p. 85].

Both numbers may be infinite, then the number of branches is countable, but the

number of rays may be uncountable; “as many” shall not refer to cardinality here.

2.: The “No Wandering Triangles”-Theorem is due to Thurston, a proof is found

in [S1, Theorem 5.1] and [Ke, Theorem 2.11]. (The name is motivated by the

proof, which deals with certain triangles in D.) If c is a pinching point of Kc with

two irrational external angles, its preimages have four irrational external angles.

If fc does not have a Cremer cycle, every periodic or preperiodic point in ∂Kc is

the landing point of a positive finite number of rays and the angles are rational

(Proposition 3.4). If there is a Cremer cycle, only irrational rays can land at this

cycle, and their number is neither known to be positive nor to be finite.

3.: The Branch Theorem is due to Douady and Hubbard [DH2], for a proof see also

[LaS, Theorem 9.1] or [S2, Theorem 2.2]. In particular every branch point of M is

a Misiurewicz point, it has a finite number of branches and all external angles are

rational.

Suppose that Ω is a Fatou component of Kc . If fc has an attracting or parabolic

cycle, then every pinching point in ∂Ω is periodic or preperiodic. If fc has a cycle of

Siegel disks and Kc is locally connected, every pinching point in ∂Ω is a preimage of

c [S1, Corollary 5.3]. If fc has a Cremer fixed point, the only candidates for pinching

points of Kc are αc and its preimages [SZ, Z1].
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Periodic Orbits

Suppose that Ω is a hyperbolic component of period p, and denote its root by a.

Its external angles are denoted by θ± , and the corresponding parameter rays bound

the wake of Ω. The bifurcation points in ∂Ω define the subwakes and sublimbs. For

c ∈ Ω, the Fatou component of fc containing c has a repelling point zc of period

dividing p on its boundary, and the dynamic rays Rc(θ±) are landing at zc . They

are called characteristic rays, and zc is called the characteristic point of its cycle, it

is separating c from 0 and from the other points in its cycle, in particular it is not

iterated behind itself. This property is obtained combinatorially from the fact that

zc is an endpoint of a Hubbard tree (Section 3.6), or that the sector between Rc(θ±)

is the smallest one in the orbit portrait [Mi3]. Now zc has an analytic continuation to

the entire wake of Ω, it stays repelling and keeps the same external angles [LaS, S4].

Conversely, suppose that c ∈ M and Kc contains a repelling cycle of p pinching

points. Then there is a unique point z1 in the cycle, which is separating c from 0

and from the other points in the cycle, i.e. it is characteristic. Now c is behind (or

in) some hyperbolic component Ω, such that z1 is the analytic continuation of the

characteristic point corresponding to the root of Ω. If the ray period of z1 is p, then

z1 has two external angles and Ω is primitive. If the ray period of z1 is rp with

r > 1, then z1 has r external angles and Ω is a satellite component coming from

an r-tupling bifurcation. Suppose that c is a root or a Misiurewicz point, then the

combinatorial arc [0, c] consists of all roots (or centers, hyperbolic components) and

Misiurewicz points separating c from 0, it is ordered by ≺. There is a monotonous

bijection between the roots on the combinatorial arc in the parameter plane and the

characteristic periodic points on the analogous combinatorial arc from αc to c in Kc

[Ls], and there is a center of smaller period between two centers of equal period. In

real dynamics this statement follows from the algorithm in [Mst].

Preperiodic Orbits

If a ∈M is a Misiurewicz point, the external rays landing at a define the subwakes,

which correspond to the branches of M behind a, and their union is called the

wake of a. Now a ∈ Ka has the same external angles, and it is not iterated behind

itself by the same arguments as in the periodic case. Thus the external angles of

some characteristic preperiodic point remain stable for parameters c behind a, if a

is not an endpoint. The landing pattern of preperiodic dynamic rays changes on

two occasions: first, when the landing pattern of the corresponding periodic rays is

changing at a root. Second, if the preperiodic landing point is iterated through 0

before reaching the stable periodic cycle, i.e. at certain Misiurewicz points.

Conversely, assume that c ∈ M and that a preperiodic pinching point z1 ∈ Kc is

separating c from 0 or αc and that it is never iterated behind itself, then there is a

corresponding Misiurewicz point before c. Since the Misiurewicz point and thus the

corresponding periodic points have more than one external angle, there is a root of a
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hyperbolic component before the Misiurewicz point, where the cycle was parabolic,

and the characteristic angles of the periodic orbit yield the external angles of the

root.

Proposition 3.14 (Correspondence of Landing Patterns)

1. If θ1, θ2 ∈ Q/Z and γM(θ1) = γM(θ2), then a parameter c is in the wake between

RM(θ1) and RM(θ2), iff γc(θ1) = γc(θ2) and the critical value c is in the dynamic

wake between Rc(θ1) and Rc(θ2).

2. Suppose that there are preperiodic rational angles 0 < φ− < ψ− < φ+ < ψ+ < 1

with γM(φ−) = γM(ψ+) 6= γM(ψ−) = γM(φ+), as in Figure 6.1 on page 97, and denote

the connected component of M between these two pinching points by SM ⊂M. Then

the following conditions are equivalent:

• No iterate of these four angles under F belongs to (φ−, ψ−) ∪ (φ+, ψ+).

• For all c ∈ SM we have γc(φ−) = γc(ψ+) 6= γc(ψ−) = γc(φ+), thus the four

relevant dynamic rays are landing in the same pattern, defining a strip in the

dynamic plane and a subset Sc ⊂ Kc .

Under these conditions we shall say that SM and Sc correspond to each other. (In

fact it is sufficient to check that no iterate of ψ− or of φ+ hits these intervals, and

Sc exists not only for c ∈ SM but behind SM as well.)

3. Under the conditions of item 2, consider rational angles θ1, θ2 ∈ [φ−, ψ−] ∪
[φ+, ψ+], such that no iterate of these angles belongs to the closed intervals (in

particular, the angles are not periodic). Then we have γM(θ1) = γM(θ2), iff γc(θ1) =

γc(θ2) for all c ∈ SM , and equivalently iff γa(θ1) = γa(θ2) for an a ∈ SM .

4. Consider rational angles 0 < θ1 < θ < θ2 < 1. If no iterate of θ1 or θ2 belongs to

(θ1, θ2) and γc(θ1) = γc(θ2) for c = γM(θ), then γM(θ1) = γM(θ2).

Of course we may define SM and Sc by more than two pinching points as well.

See [Ke, p. 76] for a related result. The statements are well-known but the term

“correspondence” is defined in a special way here. Items 2 and 3 of the Proposi-

tion are used in the recursive construction of subsets of M, e.g para-puzzle-pieces

(Section 3.5) and edges and frames, see Sections 6.1 and 7.1.

Proof of Proposition 3.14: see [Mi3] for item 1. By the discussion of the above, a

relation γc(θ1) = γc(θ2) can change only when the parameter c crosses a ray RM(θ)

or its landing point γM(θ), where θ is an iterate of θ1 or θ2 under doubling, cf. also

the continuity statement in [T4, p. 157]. Items 2 to 4 are easy consequences of this

principle.

Centers and Misiurewicz points are collectively called postcritically finite parame-

ters. Since there is a 1:1 correspondence between centers and roots, these parameters

correspond precisely to the landing points of rational parameter rays. The topolog-

ical structure of Julia sets and of M can be understood by the recursive application

of Proposition 3.14. Imagine that the parameter moves from 0 to the “outside”,

i.e. monotonously regarding the partial order ≺, and observe that structures are
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created and remain stable or change at well-defined points. To understand the rela-

tive position of branches, note that the parts of Kc between ±αc and 0 are mapped

onto the part between αc and c. This is true in a strict sense when c is a Misiurewicz

point, and when c is hyperbolic or a root, then c must be replaced with the charac-

teristic point z1 , and 0 is replaced with the preimages ±z0 of z1 (which are called

pre-characteristic points).

3.5 Limbs, Puzzles and Fibers

For parameters c in the p/q-limb of M, Kc \ {αc} has q branches, and the com-

binatorial rotation number is p/q. The Yoccoz puzzle [H1, B2] is a collection of

subsets of the dynamic plane. A Markov partition is defined by the graph Γ0
c , which

consists of a chosen equipotential line, the fixed point αc , and the ends of the q

dynamic rays landing there, within the equipotential line. Set Γn
c := f−n

c (Γ0
c) and

define the puzzle-pieces of depth n as closures of the bounded connected components

of C \ Γn
c . Every puzzle-piece is compact, connected and full, and it intersects Kc

in a non-empty connected set, which is obtained by disconnecting Kc at a finite

number of preimages of αc . The pieces of depth 0 are denoted by 0, 1, . . . , q− 1

with fk
c (0) ∈ k. To a puzzle-piece of depth n we associate a finite sequence of n+ 1

numbers, such that the i-th entry says to which piece of depth 0 the iterate f i
c(z)

belongs, where z is in the interior of the original piece. For 1 ≤ k ≤ q− 2, the

entry k is followed by k + 1, and q− 1 is followed by 0. Now 0 can be followed by

any entry, which indicates to which connected component of Kc \ {−αc} the corre-

sponding iterate of z in 0 belongs. For n > q there are in general several pieces with

the same symbolic sequence, and their qualitative shape depends on the location of

the parameter c within Mp/q , or on the location of the critical value c within Kc .

The para-puzzle-pieces of depth n in Mp/q are obtained from the graph Γn
M . It con-

sists of part of a suitable equipotential line and of the parameter rays landing at the

root of the limb and at α-type Misiurewicz points of orders ≤ n (or ≤ n− 1 in [B2],

we follow the convention of [H1]). By the correspondence from Proposition 3.14, the

puzzle-piece of depth n containing the critical value c has the same structure as the

para-puzzle-piece of depth n containing the parameter c, in particular the bounding

Jordan curves have the same number of intersections with Kc or M. Moreover, the

structure of all puzzle-pieces of depth n+1, and of many of their preimages, does not

change when c varies within some para-puzzle-piece of depth n. Edges and frames

can be described within this concept, and the dynamic frame of order 1 is implicit

in the figures on [B2, p. 54] and [H1, p. 483].

The most important application of (para-) puzzles was Yoccoz’ proof that certain

Julia sets are locally connected and that the Mandelbrot set is locally connected at

certain points, these results are recounted in Section 4.4. The idea is to obtain a

sequence of annuli around some point x from the sequence of nested (para-) puzzle-

pieces containing x, and to show that the sum of moduli diverges. Then the Grötzsch
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inequality (2.9) shows that the union of these annuli has infinite modulus, and the

diameter of the pieces containing x goes to 0. Now these pieces form a basis for

the neighborhoods of x in C, and their intersections with Kc or M are connected.

In the dynamic case, the moduli can be estimated since annuli are mapped to one

another by the holomorphic mapping fc . The moduli of parameter annuli can be

estimated in terms of dynamic annuli [H1, Roe]. We shall apply these techniques in

Section 6.3.

10
01

00 01

12

20

02

00

1/61/3

2/3 5/6

1/14

1/7

2/7

4/7

9/14

11/14

Figure 3.2: The puzzle-pieces of depth 1 for c ∈M1/2 and c ∈M1/3 . Left: the “basilica”,
Kc for the center c = −1 of period 2. Right: the “rabbit”, Kc for the center c of period
3. The rays are landing at ±αc , and the dynamics is obtained from the description of the
symbolic sequence above, see also Section 1.4.

Schleicher [S1, S2, S3] has introduced fibers as a generalization of some sets that

can be characterized by shrinking puzzle-pieces. The idea is that many results are

obtained without requiring specific external angles, and that the usual proofs of local

connectivity employing puzzles yield the stronger property that fibers are trivial.

Proposition 3.15 (Fibers)

Suppose that either K = Kc for some c ∈ M or that K = M, in particular K is

compact, connected and full. By definition a separation line consists of two ratio-

nal rays together with their common landing point, or two rational rays landing at

different points at the boundary of some interior component Ω of K, together with

their landing points and a connecting arc within Ω. A fiber of K is an equivalence

class of points in K, which cannot be separated by a separation line. A fiber is called

trivial, if it consists of a single point.

1. Every fiber F of K is compact, connected and full. Every z ∈ ∂K is in the

impression of an external ray, and every impression is contained in a single fiber.

If F ⊂ K is a non-trivial fiber, then ∂F ⊂ ∂K.

2. If the fiber of z0 ∈ ∂K is trivial, then K is locally connected at z0 , and z0 is

accessible from the exterior of K, i.e. it has at least one external angle.

3. K is locally connected, iff all fibers of K are trivial. There is one exception: if Kc

contains a cycle of Siegel disks, not all fibers of Kc are trivial but Kc may be locally

connected nevertheless.
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4. If Ω is a hyperbolic component of M, then every fiber in Ω is trivial. If there was

a non-hyperbolic component Ω of M, then Ω would be contained in a single fiber.

5. Two parameters c′ 6= c′′ ∈ M belong to different fibers, iff there is a hyperbolic

component Ω with c′, c′′ ∈ Ω, or there is a root c∗ separating c′ from c′′.

Remarks and references for a proof :

1.: Fibers are defined in [S1] for general compact connected full sets, using more

general sets of external angles. Fibers of the sets considered here have nice properties

that need not be true for other sets K. They rely e.g. on the facts that rational and

irrational rays are never landing together, that the impression of every rational ray

is trivial (except possibly for Siegel and Cremer Julia sets) [S1, S2], and that landing

points of rational rays on the boundary of some interior component are accessible

from the interior.

2., 3.: The idea for item 2 is that connected neighborhoods of z0 are constructed

by using separation lines. See [S1, S2]. In the case of a locally connected Julia set

Kc with Siegel disks, fibers become trivial when irrational rays landing at the grand

orbit of c are included for the construction of separation lines. This is the original

definition used by Schleicher to show that local connectivity of Julia sets with Siegel

disks is preserved under renormalization.

4.: If Ω is hyperbolic, the only decorations are at landing points of rational rays,

and these are dense in ∂Ω. If Ω is non-hyperbolic, no rational ray is landing at ∂Ω,

thus points in Ω cannot be separated from each other.

5.: No preperiodic ray is landing at a hyperbolic component, and if two fibers are

separated by a Misiurewicz point, they can be separated by a root as well [S2].

By items 3 and 4, local connectivity of M would imply dense hyperbolicity. See

Section 4.4 for a discussion of local connectivity in the context of renormalization,

and for further properties of non-trivial fibers in M. We will employ the concept of

fibers in Sections 6.3, 7.2 and 9.3.

3.6 Combinatorial and Topological Models

The concepts introduced in this section will be needed only in Sections 4.3 and 4.4

and in Chapter 9, they might be skipped on the first reading. According to [LaS,

BnS], the internal address of a hyperbolic component of period n is a finite sequence

of integers 1 = n0 < n1 < . . . < nk = n corresponding to hyperbolic components

Ωi of periods ni with Ω0 ≺ Ω1 ≺ . . . ≺ Ω, such that no hyperbolic component on

the combinatorial arc from Ωi to Ω has a period less than ni . It is well-defined by

Lavaurs’ Lemma from Section 3.4. When two hyperbolic components have the same

internal address, there is a hyperbolic component such that the two combinatorial

arcs pass through different sublimbs of equal denominator. The angled internal

address encodes the sublimbs and characterizes a hyperbolic component uniquely.

We shall not need the related concept of a kneading sequence [LaS, HS, S4], which
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generalizes the corresponding concept from real dynamics [Mst] to the complex case.

Suppose that c 6= 0 and fc is postcritically finite, i.e. c is a center of period ≥ 2

or a Misiurewicz point, and denote the critical orbit by (zi) with z0 = 0, z1 = c,

zi+1 = fc(zi). The concrete Hubbard tree for fc is a tree of certain arcs connecting the

critical orbit within Kc ; these arcs exist because Kc is locally connected. fc realizes

an abstract Hubbard tree H [DH1, D1, DH2, D4], which is a finite planar tree (a

simply connected graph) with marked points z0, z1, . . . together with a continuous

surjective mapping f : H → H, satisfying the following conditions:

• Every endpoint shall be marked but branch points need not be marked, and

f maps zi 7→ zi+1 . The orbit is periodic or preperiodic, with z1 6= z0 .

• f is preserving the orientation at branch points of H.

• We have H = H ′ ∪H ′′ with H ′ ∩H ′′ = {z0} and z1 ∈ H ′, but H ′′ \ {z0} may

be empty. Now f shall be injective on H ′ and on H ′′.

The number of branches at a pinching point is not decreased under f except for

z0 7→ z1 , thus z1 must be an endpoint, and H \{z0} has at most two components. If

c is a center, z0 = 0 and its images are interior points of Kc , but they are endpoints

or pinching points of the concrete Hubbard tree H. The algorithm below for external

angles of c yields the external angles of the characteristic point, i.e. the repelling

periodic point on the boundary of the Fatou component containing c. In the case

of a real polynomial, the Hubbard tree does not contain a branch point. In the

complex case, the linear order of the real orbit is replaced with a graph structure,

while the kneading sequence mentioned above encodes which of the points zi belong

to H ′ and H ′′.

Various authors have introduced variants of this definition and proved that an ab-

stract Hubbard tree is realized by a quadratic polynomial, iff f is expanding in

the following sense: when z′ 6= z′′ are marked or branch points, then some iter-

ate of the closed arc from z′ to z′′ contains the critical point z0 . For a proof see

[Pr, BnS]. Douady [D4, p. 443] claims that the condition of expansivity can be

omitted in the periodic case. Note that Bruin and Schleicher employ a different

definition of Hubbard trees: H is not embedded into the plane and f need not be

orientation-preserving at branch points, but only expanding trees are considered.

They obtain bijections between these modified Hubbard trees, kneading sequences

and internal addresses. Such a tree is realized by a quadratic polynomial, iff there

is an embedding that makes f orientation-preserving.

When a Hubbard tree is given, the external angles of c (or of the corresponding root)

are determined as follows: one can figure out the number of branches and accesses

at the critical value or characteristic point z1 , and which endpoint of the tree is

equal to the fixed point β or separating β from the other marked points. Increase

the tree so that it contains ±β. Follow the orbit of each access to z1 under f .

Observe on which side of the arc between ±β the image of the chosen access is, this
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shows if the corresponding digit of the external angle θ is 0 or 1. The coordinates of

c = γM(θ) are obtained from θ by the Spider Algorithm [HS], at least in the periodic

case. An inverse algorithm is discussed in [BnS]. The algorithm for the digits is a

kind of symbolic dynamics, the mapping in the dynamic plane corresponds to the

angle-doubling map and thus to a shift of binary digits. Other examples of symbolic

dynamics are the kneading sequence mentioned above, and the symbolic sequence

associated to a puzzle-piece (Section 3.5).

Denote the rational numbers with odd denominator by Q1 . These angles are periodic

under doubling and the corresponding parameter rays are landing in pairs at roots

of hyperbolic components, which defines an equivalence relation ∼ on Q1/Z [D1].

Lavaurs [Ls] has shown that there is a hyperbolic component of smaller period on

the combinatorial arc between two components of equal period, which suggests an

algorithm to obtain ∼ successively for increasing periods, and thus the qualitative

location of all hyperbolic components as given by the partial order ≺.

Lavaurs’ equivalence relation ∼ on Q1/Z can be characterized both by Lavaurs’

algorithm and by periodic rays landing together at the same roots. Denote the

closure of ∼ by ∼ as well. This equivalence relation on S1 = R/Z enjoys the

following properties [D4, Ke]: rational and irrational angles are never equivalent,

and whenever more than two angles form an equivalence class, they are rational and

belong to some Misiurewicz point. S1/ ∼ is a locally connected Hausdorff space,

it is homeomorphic to ∂M iff M is locally connected. In general two angles are

equivalent, iff the corresponding parameter rays are landing together, but if M was

not locally connected, there might be two rays accumulating at a non-trivial fiber.

They need not land at all, or not together, but the two angles would be equivalent.

Douady extends ∼ to a certain equivalence relation ' on D [D4]. Again D/ '
is a locally connected Hausdorff space, it is called the pinched disk model of M.

There is a continuous projection from M onto this abstract Mandelbrot set, and

the preimages of points coincide with Schleicher’s fibers (Section 3.5). Recall that

M is locally connected, iff all fibers are trivial [D4, S2]. Douady obtains another

model of M as a projective limit of disked trees. Further homeomorphic models are

obtained when spaces of Hubbard trees, kneading sequences or internal addresses

are constructed combinatorially and supplied with a suitable topology [BnS].

For Keller [Ke] the abstract Mandelbrot set is S1/∼, although it is a model of ∂M
and not of M. He considers abstract Julia sets (certain equivalence relations on

S1, which are invariant under θ 7→ 2θ), and characterizes ∼ by the fact that two

parameter angles are equivalent, iff they give rise to the same dynamic equivalence

relation. Two parameters c1, c2 belong to the same combinatorial class of M, iff

the landing pattern of rational rays in the dynamic planes of fc1 and fc2 is the same

[Mu2, S2, Ke]. Hyperbolic components plus their roots and irrational boundary

points, but without the bifurcation points, form combinatorial classes. The remain-

ing combinatorial classes are fibers.
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3.7 Non-Hyperbolic Components

The interior of M consists of countably many components, which are simply con-

nected since M is full. It is believed that all components are hyperbolic. Here

we shall discuss what a non-hyperbolic (or queer) component would be like. See

Section 4.4 for further properties and a discussion of the Dense Hyperbolicity Con-

jecture, which is related to the conjecture that M is locally connected (MLC). If

the interior of Kc is not empty, then c belongs to the closure of some hyperbolic

component by the classification in Section 3.1. We will see below that c belongs

to some non-hyperbolic component Ω, iff Jc = Kc has positive measure and carries

an invariant line field : there is a completely invariant subset A ⊂ Jc of positive

measure and a Beltrami field µ(z) with |µ(z)| = 1 on A and µ(z) = 0 otherwise,

that is invariant under T∗fc . µ has an interpretation as a field of infinitesimal lines,

or directions in the tangent space (in the sense that a rotation by π does not change

the direction of a line). If the lines at a periodic cycle are invariant, the multiplier

will be real, but this is not required here since the periodic points form a set of

measure 0.

The equivalence below is a special case of a result by Mañé–Sad–Sullivan [MSS] for

families of rational functions. The proof is much simpler for quadratic polynomials,

cf. [Mu3, p. 61] and [D1, BF1]. We will use the parametrization in Section 5.6.2.

Proposition 3.16 (Invariant Line Fields)

A parameter c0 belongs to some non-hyperbolic component Ω of M, iff Jc0 = Kc0 has

positive measure and carries an invariant line field. This line field yields a conformal

parametrization γ : D → Ω of Ω by the unit disk.

Proof : Suppose that Ω is a non-hyperbolic component. Fix a c0 ∈ Ω and consider

c ∈ Ω. Since Ω is disjoint from the closures of hyperbolic components, the Classi-

fication Theorem shows that Kc0 and Kc have empty interior. The composition of

Boettcher conjugations Φ−1
c ◦ Φc0 : C \ Jc0 → C \ Jc defines a holomorphic motion.

The λ-Lemma 2.6 yields a quasi-conformal extension φc : C → C of this mapping.

Since Jc0 is the boundary of its complement, there is at most one continuous exten-

sion, and φc is unique. We see that it is a conjugation: fc = φc ◦ fc0 ◦ φ−1
c . Now fix

a c1 ∈ Ω with c1 6= c0 , and let µ(z) be the Beltrami coefficient of φc1 . The corre-

sponding ellipse field is supported on Jc0 and invariant under fc0 , since the field of

circles is invariant under fc1 . Define A as the set of all points z ∈ Jc0 not belonging

to the grand orbit of 0, such that φc0 is differentiable at z with µ(z) 6= 0. Then A is

completely invariant under fc0 by the chain rule for derivatives of quasi-conformal

mappings. Now c1 6= c0 implies that φc1 is not holomorphic, thus A ⊂ Jc0 has

positive measure. A line field µ1(z) is defined by µ1(z) := µ(z)
|µ(z)| on A and µ1(z) := 0

otherwise. It is invariant under fc0 , since the lines are rotated by the same angles

as the semi-axes of the ellipses before.

For the converse, suppose that c0 ∈ M and Jc0 = Kc0 carries an invariant line

field µ1(z). For t ∈ D, set µt(z) := tµ1(z) and let ζt : C → C be the solution of
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the Beltrami equation ∂ζt = µt ∂ζt with ζt(z) = z + O(1/z) for z → ∞. Since µt

is an infinitesimal ellipse field that is invariant under fc0 , the conjugate function

f = ζt ◦ fc0 ◦ ζ−1
t is holomorphic. The asymptotics of ζt imply that f(z) = z2 +O(1)

for z →∞, thus it is of the form f(z) = fγ(t) = z2 + γ(t), which defines a mapping

γ : D → M with γ(0) = c0 . µt(z) is holomorphic in t for almost every z, and by

the Ahlfors–Bers Theorem 2.3, ζt(z) is analytic in t for every z. Now γ(t) = ζt(c0)

is holomorphic. We have ζt(z) = Φ−1
γ(t) ◦ Φc0(z) for z ∈ C \ Kc0 by the uniqueness

of the Boettcher conjugation. If γ(t1) = γ(t2), then ζt1 = ζt2 in C \ Kc0 and thus

in C, since Kc0 is nowhere dense. This means µt1 = µt2 , thus t1 = t2 , and γ is

injective. Therefore it is an open mapping, and its range belongs to a component of

the interior of M. Since fc0 is not hyperbolic, there is a non-hyperbolic component

Ω with γ : D → Ω. We have ζt = φγ(t) .

It remains to show that γ is surjective. Suppose not, then there is a c̃ ∈ Ω such that

the Beltrami coefficient µ̃ of φc̃ is not a multiple of µ1 . The two-parameter family

of ellipse fields tµ1 +sµ̃ yields an injective holomorphic mapping D1/2×D1/2 → Ω, a

contradiction. This argument shows at the same time that A does not contain two

completely invariant, disjoint subsets of positive measure, and that the ellipse field

µ from the first paragraph has constant eccentricity on A.
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4 Renormalization and Surgery

We shall prove the Straightening Theorem for quasi-regular quadratic-like map-

pings, discuss a new proposition on “independence of the choices” and describe

renormalization and tuning. Some results on local and pathwise connectivity of the

Mandelbrot set are summarized, and well-known examples of surgery are sketched.

4.1 Polynomial-Like Mappings

The theory of polynomial-like mappings was developed by Douady and Hubbard in

[DH3]. Suppose that U, U ′ are Jordan domains and g : U → U ′ is holomorphic.

It is called proper, if the preimage of every compact subset of U ′ is compact, or

equivalently, if zn → ∂U implies g(zn) → ∂U ′. There is a q ∈ N such that every

point in U ′ has q preimages in U (counting multiplicities). Now g : U → U ′ is a

branched covering and the extension g : ∂U → ∂U ′ exists, it is a covering of degree

q. If U ⊂ U ′, g is called polynomial-like, and the Straightening Theorem says that

g is equivalent to a polynomial of degree q.

Definition 4.1 (Quadratic-Like Mappings)

1. Suppose that U and U ′ are simply connected, bounded domains with U ⊂ U ′, and

g : U → U ′ is quasi-regular and proper of degree 2. Moreover, ∂U and ∂U ′ shall be

quasi-circles. Then g, strictly speaking the triple (g; U, U ′), is called a quadratic-like

mapping, if the dilatation of gn on g−n(U ′) is bounded uniformly in n, and if ∂g

vanishes almost everywhere on the filled-in Julia set Kg . The latter shall contain

all z ∈ U , such that gn(z) belongs to U for all n ∈ N. (For z ∈ U \ Kg , there is an

n ∈ N with gn(z) ∈ U ′ \U , and gn+1(z) is not defined.) The Julia set is Jg := ∂Kg .

2. Two quadratic-like mappings g : U → U ′ and ĝ : Û → Û ′ are called quasi-

conformally equivalent, g
qc∼ ĝ, if there is a quasi-conformal homeomorphism ψ from

a neighborhood of Kg to a neighborhood of Kĝ with g = ψ−1 ◦ ĝ ◦ ψ. We have

ψ(Kg) = Kĝ .

3. If, moreover, ∂ψ (and thus the Beltrami coefficient) is vanishing almost every-

where on Kg , then ψ is called a hybrid equivalence, g
hb∼ ĝ.

If f is a quadratic polynomial, then a suitable restriction g of f is a quadratic-like

mapping, and the Julia sets satisfy Kg = Kf . We have interchanged the notation

of U and U ′ from [DH3], and the conditions on ∂U have been added to the stan-

dard definition. Sometimes we shall distinguish between analytic and quasi-regular
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quadratic-like mappings. Usually the term “quadratic-like” is reserved for analytic

mappings, cf. item 1 of Remark 4.4. Here g may be quasi-regular in the exterior of

Kg , but the iterates must have a uniformly bounded dilatation.

The equivalences define equivalence relations. (If ψ is a hybrid-equivalence, then

D[ψ−1](z) = (Dψ)−1(ψ−1(z)) almost everywhere on Kĝ , since ψ is differentiable

almost everywhere, and it maps null sets to null sets.) If Kg has non-empty interior,

hybrid equivalence is stronger than quasi-conformal equivalence, and ψ is holomor-

phic in the interior of Kg . If Kg has measure 0, these notions are equivalent. It is

not known if there is a quadratic polynomial such that Jc has positive measure. (By

the Straightening Theorem, the answer holds for quadratic-like mappings as well.)

Hybrid-equivalence is important for uniqueness statements (see below), and because

is preserves the multiplier of an attracting cycle.

One can show that Kg is non-empty, that g has d− 1 critical points in U (counting

multiplicities), and that Kg is connected, iff all critical points belong to Kg . The

most important application of polynomial-like mappings is the Straightening Theo-

rem in the following section, which is crucial both for renormalization (Section 4.3)

and for most surgeries of quadratic polynomials, and which is also used to show that

quasi-conformal copies of ∂M appear in bifurcation loci of analytic families [Mu4].

As another application, we mention a theorem of Douady saying that a polynomial

P of degree d has at most d − 1 non-repelling cycles in C [DH3, D3, CG]: P can

be perturbed to a polynomial-like mapping g of the same degree, such that every

non-repelling cycle of P becomes an attracting cycle of g. Now each of these attracts

a critical point of g.

The following proposition will be used to prove the uniqueness part of the Straight-

ening Theorem. (Its proof could be simplified by employing the existence part.)

Item 1 is similar to [Mu1, Sec. 5], items 2 and 3 are due to [DH3]. Applications

to surgery will be given in Sections 4.5, 5.3 and 5.5, and in item 3 of Remark 5.6.

Then we have a quasi-regular quadratic-like mapping gc defined uniquely on Kc by

the required combinatorics, but there are several choices to be made for the defini-

tion in the exterior. Now all of these functions are hybrid-equivalent, and thus the

resulting polynomial and the homeomorphism on M are determined uniquely:

Proposition 4.2 (Independence of All Possible Choices)

1. Suppose that g : U → U ′ and ĝ : Û → Û ′ are quadratic-like mappings, such that

the filled-in Julia sets are connected and equal, Kg = Kĝ =: K, and that g = ĝ on

K. Then g and ĝ are hybrid-equivalent. Moreover, every quasi-conformal mapping

α : U ′ \ K → Û ′ \ K with ĝ ◦ α = α ◦ g in U \ K extends by the identity to a

hybrid-equivalence α : U ′ → Û ′.

2. If c, ĉ ∈M and fc
hb∼ fĉ , then c = ĉ.

3. If c ∈ ∂M, ĉ ∈M and fc
qc∼ fĉ , then c = ĉ.

Proof : 1. Choose a quasi-conformal mapping α0 : U ′\U → Û ′\Û with ĝ◦α0 = α0◦g
on ∂U . Extend it by recursive pullbacks to a homeomorphism α : U ′ \ K → Û ′ \ K
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with ĝ ◦ α = α ◦ g in U \ K. On a dense subset of full measure in its domain, α is

of the form ĝ−n ◦ α0 ◦ gn, thus it is quasi-conformal. Choose a conformal mapping

Φ : Ĉ \ K → Ĉ \ D with ∞ 7→ ∞. Set G := Φ ◦ g ◦ Φ−1, Ĝ := Φ ◦ ĝ ◦ Φ−1

and A := Φ ◦ α ◦ Φ−1. These mappings are defined in suitable annuli, whose inner

boundary is the unit circle. By Section 2.2 they have continuous extensions to Ĉ\D.

The “boundary values” on S1 = R/Z shall be denoted by G, Ĝ and A. They are

defined by e.g. A(ei2πθ) = ei2πA(θ). We will use similar methods in Section 9.1.

Straight rays are denoted by R(θ) ⊂ C \ D, and RK(θ) := Φ−1(R(θ)) defines an

external ray. There is a dense set Θ ⊂ S1, such that RK(θ) is landing for θ ∈ Θ, and

such that at most a finite number of rays are landing at the same z ∈ ∂K. If there

is more than one ray, then exactly one is landing through each access, between two

components of K \ {z}. Assume that θ ∈ Θ and RK(θ) lands at z ∈ ∂K, then both

g(RK(θ)) and ĝ(RK(θ)) land at g(z) = ĝ(z). They are landing through the same

access, since g = ĝ on K. Now Φ(g(RK(θ))) = G(R(θ)) lands at ei2πG(θ) ∈ ∂D, and

Lindelöf’s Theorem 2.1 shows that RK(G(θ)) lands at g(z) through the same access

as g(RK(θ)). Together with the corresponding result for ĝ we obtain G(θ) = Ĝ(θ).

Since Θ is dense, G = Ĝ on S1.

Now Ĝ ◦ A = A ◦ G implies G ◦ A = Ĝ ◦ A = A ◦ G, and this relation yields

A = id: a quasi-conformal equivalence from G to F (z) = z2 is constructed easily,

thus G is topologically conjugate to F(θ) = 2θmod 1. The identity is the only

orientation-preserving conjugation from F to itself, since an induction shows that

any conjugation must fix the dyadic angles. (For degrees q > 2, A can be conjugate

to a multiplication with ζ, ζq−1 = 1, and an additional condition is needed to ensure

ζ = 1.) A extends to a quasi-conformal mapping Ĉ \ D → Ĉ \ D, and its boundary

value is the identity. Therefore α extends by the identity to a homeomorphism [Mu1,

Proposition 5.2]. We shall recount the proof here:

For z ∈ Ĉ\K and w = Φ(z) we have dĈ\K(z, α(z)) = dĈ\D(w, A(w)), and by applying

Lemma 2.4 to 1/A(1/w), these hyperbolic distances are bounded uniformly in z. If

(zn) ⊂ Ĉ \ K and zn → z0 ∈ ∂K, the Euclidean distance of zn and α(zn) goes to 0

and α(zn) → z0 (Theorem 2.1). Now α extends continuously to the identity on K,

and the extended α : Ĉ → Ĉ is a homeomorphism. The Rickmann–Bers–Royden

Lemma 2.5 shows that α is quasi-conformal with ∂α = 0 almost everywhere on K.

The extended α : U ′ → Û ′ is a hybrid-equivalence with α ◦ g ◦ α−1 = ĝ.

2.: We have c, ĉ ∈ M and a hybrid-equivalence ψ is conjugating the quadratic-like

restrictions fc : U → U ′, fĉ : Û → Û ′ of polynomials: fc = ψ−1 ◦ fĉ ◦ ψ in U . Define

φ : C → C by φ := Φ−1
ĉ
◦ Φc in C \ Kc and φ := ψ on Kc . Then φ is bijective

and conjugating fc to fĉ in C. We want to show that φ is a hybrid-equivalence.

α := ψ−1 ◦ φ : φ−1(Û ′ \ Kc) → U ′ \ Kc is conjugating fc to itself in the exterior

of Kc . By item 1, α extends to the identity on Kc and this mapping is a hybrid-

equivalence from fc to itself, thus φ = ψ ◦ α is a hybrid-equivalence between fc and

fĉ . It is holomorphic in the exterior of Kc and thus almost everywhere. Now φ is

affine and in fact the identity, and c = ĉ.
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3.: Now c ∈ ∂M and ĉ ∈ M, and a quasi-conformal equivalence ψ is given in a

neighborhood of Kc , conjugating fc = ψ−1 ◦ fĉ ◦ ψ. The proof is similar to the

construction in Section 3.7: define µ as the Beltrami-coefficient of ψ on Kc and

µ := 0 in C \ Kc . Set m := ‖µ‖∞ < 1 and for |t| < 1/m, consider a Beltrami

coefficient µt := tµ, and Ψt shall be the solution of the corresponding Beltrami

equation with Ψt(z) = z + O(1/z) for z → ∞. Now fc is holomorphic and the

ellipse field defined by µ is invariant under T∗fc . Thus µt is again invariant under

T∗fc , and Ψt ◦ fc ◦ Ψ−1
t is holomorphic. In fact it is a quadratic polynomial of

the form z2 + γ(t). By the Ahlfors–Bers Theorem 2.3, Ψt(z) depends analytically

on t for every z, thus γ : D1/m → M is holomorphic. It is either constant or an

open mapping, and c = γ(0) ∈ ∂M shows that it cannot be open. Ψ1 ◦ ψ−1 is a

hybrid-equivalence between fĉ and fγ(1) , thus ĉ = γ(1) = γ(0) = c.

In the proof for item 2, only a special case of item 1 was needed: α was a self-

conjugation of fc , and there are alternative proofs for the extension by the identity.

In [DH3, Lemma 1] the hyperbolic distance dC\D(z, A(z)) is shown to be bounded

by employing

dC\D(z, A(z)) = dC\D(F n(z), F n(A(z))) = dC\D(F n(z), A(F n(z))) .

See also [L2, Section 10.4]. These proofs rely on the fact that F is a local isometry

for that metric, and do not require quasi-conformality of α. The proofs by Douady–

Hubbard and Lyubich are not easily adapted to prove item 1, since in our case A is

not a self-conjugation of F but Ĝn ◦ A = A ◦Gn, which is of little use.

4.2 A Quasi-Regular Straightening Theorem

The generalized Straightening Theorem will be applied to families g = gc in Chap-

ter 5, and we conjugate g to fd to avoid confusion of c and d. Geyer has remarked

that the conditions on g from Definition 4.1 are best-possible in the sense that

they are satisfied whenever g is hybrid-equivalent to an analytic quadratic-like map-

ping. Bielefeld [Bi] has obtained a conjugation under the stronger assumption of

Shishikura’s Principle. Geyer has given a proof for more general mappings, weak-

ening the condition U ⊂ U ′ [Ge]. The approach of incorporating the straightening

into the surgery was used by Branner–Fagella [BF2] to obtain an extension of their

homeomorphisms to the exterior of the limbs.

Theorem 4.3 (Straightening of Quadratic-Like Mappings)

A quadratic-like mapping g : U → U ′ is hybrid-equivalent to a quadratic polynomial.

There are a quasi-conformal homeomorphism ψ : U ′ → B′ with ∂ψ = 0 almost

everywhere on Kg and a polynomial fd(z) = z2 + d, such that g = ψ−1 ◦ fd ◦ ψ
on U . The filled-in Julia set Kg is mapped onto Kd by ψ. If Kg is connected, the

parameter d belongs to M and it is determined uniquely by g, and the conjugation

ψ is determined uniquely on Kg .
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The construction from the proof will not yield c ∈ M explicitly or numerically.

But if g is postcritically finite or has an attracting cycle, then c is determined

combinatorially, e.g. from a Hubbard tree (Section 3.6).

The uniqueness statement is wrong outside of M: by [MSS], fc and fĉ are hybrid-

equivalent for all c, ĉ ∈ C \M. The following proof can be adjusted to construct

such a conjugation. If the degree is q > 2, g is hybrid-equivalent to a polynomial P

of degree q. If Kg is connected, P is unique up to an affine conjugation.

We have required ∂U, ∂U ′ to be quasi-circles in order to have ψ defined on all of

U ′. In most applications they are piecewise smooth. If U, U ′ are arbitrary Jordan

domains, the conditions will be satisfied for a suitable restriction of g.

Proof of Theorem 4.3:

Fix a radius R > 1. Since ∂U and ∂U ′ are quasi-circles, g has a continuous extension

to U . Choose a quasi-conformal homeomorphism ξ : U ′ \ U → DR2 \ DR with

F ◦ ξ = ξ ◦ g on ∂U . (Take an arbitrary quasi-symmetric homeomorphism from

the outer boundary ∂U ′ onto the outer boundary ∂DR2 , choose one of the two

continuous solutions of
(
ξ(z)

)2
= ξ

(
g(z)

)
on the inner boundary ∂U , then ξ is

quasi-symmetric there, too, and there is a quasi-conformal extension to the annulus,

cf. Section 2.2.) The ellipse field µ(z) shall be invariant under T∗g. It is defined as

follows: for z ∈ U ′ \ U , µ is the Beltrami coefficient of ξ. The preimages of U ′ \ U
form a countable family of disjoint open sets, which have full measure in U \ Kg ,

and in which µ is defined by a pullback with T∗g (except at the critical point and its

preimages, if Kg is disconnected). If g is holomorphic in U , the dilatation ratio of µ

is not increased. If the dilatation of µ is bounded by K ′′ in U ′ \U and the iterates of

g are K ′-quasi-regular, the dilatation of µ in U may be increased under the pullback,

but it is bounded by a constant K ≤ K ′K ′′. Set µ := 0 on the compact set Kg ,

then µ is measurable in U ′, since it is measurable in the preimages of U ′ \ U , and

since the preimages of ∂U form a set of measure 0.

Choose a quasi-conformal mapping η : U ′ → DR2 with η = ξ in U ′ \ U . Define the

quasi-regular mapping g̃ : C → C by g̃ = η ◦ g ◦ η−1 in DR and by g̃ = F in C \DR .

Consider the ellipse field ν with ν(η(z)) := (T∗η(z))µ(z), η(z) ∈ DR2 and ν := 0 in

C \ DR2 . In fact ν = 0 in C \ DR , since µ is the Beltrami coefficient of ξ = η in

U ′ \U . Now ν has bounded dilatation ratio and is invariant under T∗g̃. Theorem 2.3

yields a unique solution ζ : C → C of the Beltrami equation ∂ζ = ν ∂ζ with

ζ(z) = z+O(1/z) for z →∞, and we set f := ζ ◦ g̃◦ζ−1. Almost every infinitesimal

circle is mapped to a circle by T∗f , thus f is holomorphic. f(z) = z2 + O(1) for

z →∞ implies that f is of the form fd(z) = z2 + d. Now ψ := ζ ◦ η is conjugating

g : U → U ′ to fd : B → B′, cf. Figure 4.1. The Beltrami coefficient of ψ is given by

µ on U ′, especially ψ is a hybrid equivalence. Since µ is the Beltrami-coefficient of

ψ, ψ is K-quasi-conformal. η(Kg) contains precisely the points in C with a bounded

orbit under g̃, thus η(Kg) = ζ−1(Kd) and ψ(Kg) = Kd .

By the uniqueness of the Boettcher conjugation we have ζ = Φ−1
d in a neighborhood

of ∞ and thus in C \ DR . Especially B = Int(|Φd| = R) and B′ = Int(|Φd| = R2).
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We have ψ = Φ−1
d ◦ ξ in the fundamental annulus U ′ \ U , see Corollary 4.5 for a

discussion of this strong relation, which is obtained indirectly here, although for a

solution of a Beltrami equation only a finite number of values can be prescribed.

If Kg is connected, then we have d ∈ M, and d is determined uniquely according

to item 2 of Proposition 4.2. Suppose that ψ1 and ψ2 are hybrid-equivalences from

g to fd . Then ψ2 ◦ ψ−1
1 is a hybrid-equivalence from fd to itself, and by that proof

ψ2 ◦ ψ−1
1 is the identity on Kd , therefore ψ1 = ψ2 on Kg .

U

U ′

g

?

DR

DR2

g̃
?

B

B′

fd

?

η
-

η
-

ζ
-

ζ
-

ψ

QQs

ψ
��3

U\L

U ′\L

g

?

B\Nd

B′\Nd

fd

?

DR\N

DR2\N

F
?

ψ
-

ψ
-

Φd
-

Φd

-

ξ

QQs

ξ
��3

Figure 4.1: The commuting diagrams show the straightening of g and the extension of
ξ. We have B := ψ(U) = Int(|Φd| = R) and B′ := ψ(U ′) = Int(|Φd| = R2).

Remark 4.4 (Alternative Proofs)

1. The modifications in the above proof for the quasi-regular case compared to the

analytic case are only minor, and we shall discuss alternative proofs for both cases

in the following items. The classical proof of the quasi-regular case would be by the

method introduced in [BD]: construct a T∗g-invariant ellipse field in U ′, which is 0

in U
′ \U and on Kg , and let χ : U ′ → D solve the corresponding Beltrami equation.

Then χ ◦ g ◦ χ−1 : χ(U) → D is a holomorphic quadratic-like mapping, which is

straightened by the Straightening Theorem for analytic quadratic-like mappings.

Here it is hard to control ψ, and presumably it is not possible to deal with families

of mappings as in item 4 below.

2. Douady and Hubbard have given two different proofs (for the analytic case),

and the one given above follows [DH3, p. 307–308]. Now we shall sketch the first

proof by Douady and Hubbard, which was given in [DH3, p. 298–301] in terms of

external classes, see also [D1, D3]: the T∗g-invariant ellipse field µ is obtained from

the chosen ξ : U ′ \ U → DR2 \ DR as above. The Measurable Riemann Mapping

Theorem yields a quasi-conformal φ : U ′ → D with ∂φ = µ ∂φ. A Riemann surface S

is constructed by gluing Ĉ\DR to D via the holomorphic identification φ◦ ξ−1. Now

F̃ : S → S is given by F in Ĉ \ DR and by φ ◦ g ◦ φ−1 in D. By the Uniformization

Theorem there is a conformal Φ : Ĉ → S with Φ(z) = z + O(1/z) for z → ∞. F̃

is holomorphic, and f = Φ−1 ◦ F̃ ◦ Φ is of the form fd . The hybrid equivalence is

obtained as ψ = Φ−1 ◦ φ. Here Φ = Φd on Φ−1(C \ DR).

3. An alternative proof was given by Shishikura [Sh1], see also [Bi, CG]: choose a

conformal mapping ξ : Ĉ \ U ′ → Ĉ \ DR2 with ∞ 7→ ∞, it is quasi-symmetric on
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∂U ′. Extend it to a quasi-conformal mapping on C\U , such that
(
ξ(z)

)2
= ξ

(
g(z)

)
for z ∈ ∂U . Extend g : U → U ′ to ĝ : C → C by setting ĝ = ξ−1 ◦ F ◦ ξ in C \ U .

The measurable T∗ĝ-invariant ellipse field µ is obtained in the same way as above.

Define ψ : C → C as the unique solution of the Beltrami equation ∂ψ = µ ∂ψ with

ψ(z) = ξ(z) +O(1/z) for z →∞, then fd = ψ ◦ ĝ ◦ ψ−1.

4. When a single quadratic-like mapping g is straightened, it will be only a matter

of taste whether you use a proof by Douady–Hubbard or the proof by Shishikura,

and the latter might be simpler. But if you are dealing with a family gλ : Uλ → U ′
λ ,

the techniques of Douady–Hubbard are recommended: it would be hard to control

the conformal mapping of C \ U ′
λ , which determines the boundary values of ξλ on

U ′
λ \ Uλ . But it is easy to prescribe a diffeomorphism ξλ on U ′

λ \ Uλ , such that it

depends on λ in a nice way. The following corollary of the above proof shows that

ξλ determines the straightening map λ 7→ d outside of the connectedness locus, i.e.

when Kλ is disconnected. See also Section 4.3 and item 4 of Remark 5.6.

Corollary 4.5 (ξ determines ψ)

Recall F (z) = z2. In Theorem 4.3, ψ is obtained as follows: for any choice of

a radius R > 1, and of a quasi-conformal mapping ξ : U ′ \ U → DR2 \ DR with

F ◦ξ = ξ◦g on ∂U , a hybrid-equivalence ψ from g to some fd can be constructed from

ξ such that ψ = Φ−1
d ◦ ξ in U ′ \ U . The boundary ∂U is mapped to an equipotential

line of fd . If the dilatation of the iterates gn is bounded by K ′ and the dilatation of

ξ is bounded by K ′′, then ψ is K-quasi-conformal with K ≤ K ′K ′′.

1. If Kg is connected, then d ∈ M, and d is independent of the choice of ξ or ψ. ξ

can be extended to U ′ \Kg , conjugating g to F . The hybrid-equivalence ψ satisfying

ψ = Φ−1
d ◦ ξ in U ′ \U is determined uniquely by ξ, and on Kg it is independent of ξ.

2. If Kg is disconnected, there is a compact connected full set L with Kg ⊂ L ⊂ U ,

such that ξ can be extended to U ′ \L, conjugating g to F . The critical point ωg of g

shall belong to L and the critical value Cg shall be in U ′ \ L. Now d is determined

from ξ(Cg) = ΦM(d). Thus it depends on the extended ξ, which is determined by the

choice of ξ on U ′ \ U .

Proof : 1.: Assume that ψ was obtained from ξ as above, thus ψ = Φ−1
d ◦ξ in U ′ \U .

ξ can be extended to U ′ \ Kg by recursive pullbacks, such that the second diagram

in Figure 4.1 is commuting for L = Kg . Or we may set ξ := Φd ◦ ψ on U ′ \ Kg . ξ

is determined uniquely by its restriction to the fundamental annulus U ′ \ U . Note

that µ is the Beltrami coefficient of both ψ and the extended ξ. Now ξ determines

µ, and µ determines ψ : U ′ → Int(|Φd| = R2) up to a choice of the images of three

boundary points. Thus ψ = Φ−1
d ◦ ξ on U ′ \ U determines ψ uniquely.

2.: If Kg is disconnected, we choose a compact connected full set L with Kg ⊂ L ⊂
U , such that ξ can be extended to U ′ \ L by a pullback analogous to item 3 of

Proposition 3.2. Or Φd is extended to a set C \Nd , and ξ := Φd ◦ ψ, cf. Figure 4.1.

Note that ψ(Cg) = d and d is obtained from ξ(Cg) = Φd(d) = ΦM(d). Again

ψ = Φ−1
d ◦ ξ on U ′ \ U determines ψ uniquely.
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4.3 Tuning

fc is called p-renormalizable, if there is a quadratic-like restriction gc = fp
c : Uc → U ′

c

of fp
c , such that its filled-in Julia set Kc, p is connected. Then there is a p-cycle of

quadratic-like restrictions, and we may assume that Kc, p contains the critical value

c of fc . The Straightening Theorem yields a hybrid-equivalence ψc to a quadratic

polynomial fd . The term renormalization loosely refers to the mappings gc or fd ,

and to the process of their construction. The set Kc, p is the little Julia set, and the

little α- and β-fixed points are the points of period dividing p in the little Julia set,

that are mapped to αd and βd under ψc . McMullen [Mu3] has shown that there

are the following three types of renormalization, classified according to the relative

position of the sets fk
c (Kc, p), 0 ≤ k ≤ p−1, and the periods of the little fixed points:

• Disjoint renormalization, the p sets are disjoint, the little fixed points both

have period p.

• β-type, the period of the little β-fixed point is a proper divisor p′ of p, and

p′/p of the sets meet at each point of the p′-cycle, i.e. they have little β-fixed

points in common.

• α-type or crossed renormalization, the period of the little α-fixed point is a

proper divisor p′ of p, and p′/p of the sets cross at each point of the p′-cycle,

at their little α-fixed points.

The locus of crossed p-renormalizable parameters has infinitely many connected

components, it is described in [RS]. The first two types are collectively referred

to as simple renormalization. The locus of parameters c such that fc is simply

p-renormalizable consists of finitely many connected components, which are home-

omorphic to M. The homeomorphism is constructed by renormalization and the

inverse mapping is called tuning. Any p-renormalizable parameter c belongs to a

little Mandelbrot set Mp for period p, and fc is p-renormalizable for all c ∈ Mp .

Moreover, for every hyperbolic component Ω of period p there is a unique little

Mandelbrot set Mp , such that Ω is its main cardioid. Now disjoint renormalization

corresponds to primitive components, and β-type renormalization to satellite compo-

nents. These results have been described by Douady and Hubbard in [D1, DH3, D3],

see also [S3, Mi3], but a complete proof was not published before Häıssinsky [Ha2].

We shall describe the constructions for the example of the primitive little Mandelbrot

setM4 of period 4 in the limbM1/3 in detail, both to illustrate the application of the

Straightening Theorem and for later reference in Sections 5.4, 7.3, 7.5 and 8.6. See

also Figure 4.2. The center of period 4 is denoted by c0 . The straightening map will

be constructed also in the exterior of M4 , i.e. for certain parameters c such that the

little Julia set of f 4
c is disconnected, but in that case fc is not called 4-renormalizable,

and the parameter obtained by straightening is not unique. The Jordan domain PM

in the parameter plane is bounded by parts of the rays RM(11/56) and RM(15/56),
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and of an equipotential line GM(c) = 2η > 0. For c ∈ PM we have a quadratic-

like restriction gc = f 4
c : Uc → U ′

c , where Uc is bounded by parts of the equipo-

tential line Gc(z) = η and the four rays Rc(179/896), Rc(183/896), Rc(235/896)

and Rc(239/896), and U ′
c is bounded by parts of Rc(11/56) and Rc(15/56), and

Gc(z) = 2η. The little Julia set Kc, 4 is the filled-in Julia set of gc according to

Definition 4.1, the critical value of gc is c, and the critical point is given by a branch

of f−3
c (0).

∂Uc

∂U ′
c ∂PM

↑ ψc ↑ χ

Figure 4.2: Left: a quadratic-like restriction gc = f4
c : Uc → U ′c . Kc contains the little

Julia set Kc, 4 , which is mapped to the rabbit Kd by ψc . Right: the little Mandelbrot set
M4 = c0 ∗M in M. A para-puzzle-piece PM is mapped to the interior of |ΦM(c)| = R2

under the straightening map χ. See Figure 7.5 on page 117 for some decorations at M4 .

The Straightening Theorem 4.3 yields a parameter d ∈ BM and a hybrid-equivalence

ψc : U ′
c → B′

d , where BM is the neighborhood of M bounded by GM(c) = logR2 for

a chosen R > 1 and B′
d is bounded by Gd(z) = logR2. Now χ : PM → BM is defined

by χ(c) := d. The little Mandelbrot set M4 shall contain all parameters c ∈ PM ,

such that Kc, 4 is connected, thus M4 ⊂M and c ∈ M4 ⇔ χ(c) ∈ M. For c ∈ M4

the mapping χ is independent of all choices, but according to Corollary 4.5 we must

specify a “tubing” to define a straightening in the case of disconnected Julia sets.

Thus for every c ∈ PM we require a quasi-conformal ξc : Ac = U ′
c\Uc → DR2\DR with

ξc ◦ gc = F ◦ ξc on ∂Uc . Then d and ψc are determined uniquely by the construction

in the previous section, or by the condition ψc = Φ−1
d ◦ξc in the fundamental annulus

Ac . Note that hc = Φ−1
c ◦ Φc0 : ∂Ac0 → ∂Ac defines a holomorphic motion of ∂Ac0

for c ∈ PM (more precisely, ∂Ac0 ∩ Kc0 consists of three points where the Boettcher

conjugation is not defined, but which move holomorphically nevertheless). The λ-
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Lemma 2.6 provides an extension hc : U ′
c0
→ U ′

c , which satisfies gc ◦ hc = hc ◦ gc0 on

∂Uc0 . Choose the required conjugation ξc0 and set ξc := ξc0 ◦ h−1
c , then the tubing

ξ−1
c (z) is horizontally analytic, i.e. it depends analytically on c ∈ PM . Now ψc and

d = χ(c) are well-defined for c ∈ PM . M4 is compactly contained in PM , e.g. since

it is contained in the set corresponding to Uc . According to [DH3], χ is continuous

and proper, and it is injective since there is only one center of period 4 in PM . The

range is determined explicitly below. Thus χ is a homeomorphism PM → BM and

M4 →M. It is analytic in the interior ofM4 . For c ∈ PM with c ∈ U ′
c\Uc , d = χ(c)

is determined by ΦM(d) = ξc(c) according to Corollary 4.5, and a short computation

shows that χ is quasi-conformal away from ∂PM , i.e. the local dilatation bound of χ

is estimated in terms of the global dilatation bound for hc . There are two approaches

to extend this result to PM\M4 : in [DH3, p. 328] the formula ξc(g
n
c (c)) = F n(ΦM(d))

is used, where n is chosen such that gn
c (c) belongs to the fundamental annulus, and

ξc is not extended. Alternatively ξc can be extended according to Corollary 4.5,

this method was used by Lyubich [L5, Lemma 3.1]. In [L4, Theorem 5.5] he has

shown that χ is quasi-conformal in a neighborhood of M4 : at the boundary of

M4, renormalization has a local quasi-conformal extension to the exterior of M4

by a transversality property for the renormalization of quadratic-like germs, and

Lemma 2.5 shows that the former extension is quasi-conformal everywhere.

The tuning map M → M4 , x 7→ c0 ∗ x is defined as the inverse of χ, we have

χ(c0 ∗ x) = x for x ∈ M. Since the restriction χ : M4 → M is continuous, the

tuning map is continuous as well by the Closed Graph Theorem. For c ∈ M4 ,

the preimages of ∂Uc under gc = f 4
c form a sequence of nested simple closed curves

around Kc, 4 . Their points of intersection with the large Julia set Kc show that

infinitely many “decorations” are cut off from the Julia set, i.e. Kc\Kc, 4 has infinitely

many components. The parameter rays RM(3/15) and RM(4/15) are landing at the

root c1 of the period-4 hyperbolic component with center c0 . Now M\{c1} has two

connected components, and M4 \{c1} is behind c1 . This statement is related to the

landing properties of parameter rays and to local connectivity of M at root points,

see e.g. [S4, T4]. Now for c ∈ M4 the dynamic rays Rc(3/15) and Rc(4/15) are

landing together at a repelling or parabolic 4-periodic point z1 , which is the little

β-fixed point of gc . We claim that the pinching points separating Kc, 4 from the

decorations are precisely z1 and its preimages under gc . This statement is proved

for c = c0 , and it is extended to c ∈ M4 by the stability of landing patterns

according to Proposition 3.14. Certain preimages of γc0(179/896) accumulate at

z1 , thus the branch of Kc0 before z1 is disjoint from Kc0, 4 . Now the little Julia

set is a quasi-disk and ψc conjugates gc there to z2 on D, thus a countable family

of decorations at the preimages of z1 is obtained. One finds that only a Cantor

set of external angles remains, and local connectivity of Kc0 shows that there are

no other decorations. The recursive application of Proposition 3.14 shows that the

decorations of M4 are attached to Misiurewicz points of the form c0 ∗ b, where b

is a β-type Misiurewicz point, and that the pattern of decorations in the dynamic

plane does not change before these points, i.e. in M4 . The topology is discussed
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in [Ha2, S3]: Kc is locally connected or has trivial fibers, iff Kd has this property.

Note the qualitative similarity between the dynamic plane and the parameter plane

in Figure 4.2, in the way the decorations are attached to the little Julia set and to

the little Mandelbrot set. For c = c0 ∗ x ∈ M4 , Kc has the following description:

the closure of every Fatou component of Kc0 is replaced with a copy of Kx . See also

the examples in Figure 3.1 on page 44, where c0 is not primitive.

We have the binary expansions 3/15 = .0011 and 4/15 = .0100. Consider the

expansion of an angle θ̃ ∈ [0, 1) and replace every 0 with 0011 and 1 with 0100,

this defines an angle θ ∈ [0, 1). In fact this definition is not unique, if θ̃ is a

dyadic angle, since . ∗ 01 = . ∗ 10. Now suppose that these angles are rational,

x ∈ M, c = c0 ∗ x ∈ M4 , then we have γc(θ) ∈ Kc, 4 and the hybrid-equivalence

ψc : Kc, 4 → Kx maps z = γc(θ) to z̃ = γx(θ̃) [D2, Mi3, Mi1]. The idea of the proof

is to follow the orbit of the little Julia set and to recall that a digit of an external

angle is 0 or 1, according to the position of the iterate of the access relative to the

rays landing at ±βc . If θ̃ is not dyadic, there are as many accesses to z in C \ Kc

as there are accesses to z̃ in C \ Kx , and the relation between the angles is 1:1.

If θ̃ is a dyadic angle, z̃ has one access, but z has two accesses corresponding to

the two possible choices of θ, and a decoration is attached to z. (In the analogous

situation for a non-primitive center c0 coming from an m-tupling bifurcation, z has

m accesses and the angles of those closest to the little Julia set are obtained from θ̃.)

By the landing properties of parameter rays we have c0 ∗ γM(θ̃) = γM(θ). Thus the

mappings x 7→ c0 ∗ x and z 7→ ψc(z) have a partial combinatorial description. Both

in the dynamic and in the parameter planes, the statements generalize to points

with trivial fibers. The angles of rays accumulating or landing at M4 or Kc, 4 form a

Cantor set of measure 0, the open intervals in the complement are corresponding to

the decorations. The mapping θ 7→ θ̃ extends to a “Devil’s Staircase”. We will apply

these relations in Sections 9.1 and 9.3 to the composition of tuning maps between

two little Mandelbrot sets.

For every center c0 of period p, a little Mandelbrot set Mp and a tuning map

M → Mp , x 7→ c0 ∗ x are constructed analogously. A remark on the notation:

Douady–Hubbard are writing c0 ⊥ x, the notation c0 ∗ x is due to Milnor [Mi1].

Now the parameter c = c0 ⊥ x = c0 ∗ x is called “c0 tuned by x”, which suggests

that c0 is moved a little when x ∈ M is varied. This intuition means that x is

operating on c0 , but in many applications c0 is fixed and one is thinking in terms

of the mapping x 7→ c0 ∗ x, thus c0 is operating on x. We will use formulations like

“the image of x under the tuning map for c0” to indicate this, but we shall take the

freedom to call c0 ∗M a “tuned copy of M” instead of “c0 tuned by M”.

Theorem 4.6 (Tuning)

1. For every center c0 ∈M of period p > 1 there is a subset Mp ⊂M containing c0
and an associated homeomorphism M→Mp , x 7→ c0∗x with c0∗0 = c0 . It is called

a tuning map, and Mp = c0 ∗M is a tuned copy of M or a little Mandelbrot set.

Tuning is the inverse to simple renormalization, i.e. fc is simply p-renormalizable

for c ∈ Mp and the quadratic-like restriction of fp
c to a neighborhood of the little
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Julia set Kc, p is hybrid equivalent to fx for c = c0 ∗ x. (If c0 is not primitive, the

corresponding root must be excluded here.)

2. We have ∂Mp ⊂ ∂M, and the root of Mp together with the tuned images

of β-type Misiurewicz points are precisely the pinching points separating Mp from

the decorations attached to Mp , i.e. the connected components of M \Mp. The

decorations of Kc, p are attached to the “little β-fixed point” and its preimages.

3. Suppose that the external angles of the root corresponding to c0 are θ± =
u±

2p − 1
.

u± is interpreted as a finite sequence of p binary digits, thus θ± = .u± . For any

sequence (sn) of signs, set θ = .us1us2us3 . . ., and define θ̃ such that its n-th binary

digit is 0 or 1, iff sn is − or +. At least for (pre-) periodic sequences we have the

following correspondences: in the parameter plane, θ̃ is an external angle of some

x ∈M, and θ is an external angle of c0 ∗ x ∈Mp . For x ∈M and c = c0 ∗ x, ψc :

Kc, p → Kx maps γc(θ) to γx(θ̃). Thus c0∗x and ψc(z) is determined combinatorially.

The results have been discussed for an example above, a proof is found in [Ha2]. In

the primitive case, the required external angles are obtained from [T4]. The satellite

case needs additional techniques, moreover fc is not p-renormalizable at the root,

but the mapping χ extends continuously to this point. The tuning map is analytic

in the interior of M and preserves multipliers in hyperbolic components. It has an

extension to a neighborhood of M, which is quasi-conformal everywhere [L4]. (If c0
is not primitive, a neighborhood of the corresponding root must be excluded here.)

We also write 0 ∗M = M, but M shall not be called a tuned copy of itself. For

all centers c0 , c
′
0 and parameters x ∈ M we have c0 ∗ (c′0 ∗ x) = (c0 ∗ c′0) ∗ x, thus

the centers form a non-commutative semi-group with identity 0, which is operating

on M [Mi1]. In real dynamics, Feigenbaum had suggested to explain the scaling

properties of period-doubling in terms of renormalization. His conjectures have

been proved by Lanford with the aid of computers, and Lyubich [L4] has given a

computer-free proof. That paper also contains a proof of Milnor’s conjectures about

the scaling properties of M at the Feigenbaum point [Mi1].

4.4 Renormalization and Local Connectivity

The topics discussed in this section are needed only occasionally in the sequel, they

might be skipped on the first reading. There are two famous conjectures about the

Mandelbrot set, which have motivated a lot of research:

• The Mandelbrot set is locally connected (MLC).

• fc is hyperbolic for an open dense set of parameters c, namely for c ∈ C\∂M.

Proposition 4.7 (MLC Implies Dense Hyperbolicity)

1. M is locally connected, iff every parameter ray lands at ∂M and γM : S1 → ∂M
is a continuous surjection.
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2. Every interior component of M is hyperbolic, iff there is no parameter c ∈ C
such that Kc = Jc supports an invariant line field.

3. Local connectivity of M would imply dense hyperbolicity.

Proof: 1. See Carathéodory’s Theorem 2.1.

2. The result is due to Mañé, Sad and Sullivan, see [MSS, Mu3]. The proof was

recounted in Section 3.7.

3. Suppose that Ω is an interior component of M (not the main cardioid) and that

there are angles 0 < θ1 < θ2 < θ3 < 1 such that RM(θi) is landing at ∂Ω. Choose

rational angles θ′, θ′′ with 0 < θ1 < θ′ < θ2 < θ′′ < θ3 < 1. The parameters 0,

γM(θ′) and γM(θ′′) belong to different connected components of M \ Ω. By the

Branch Theorem 3.13, Ω is hyperbolic. Thus at most two rays can land at a non-

hyperbolic component. If M was locally connected, every interior component would

have infinitely many rays landing at its boundary.

Item 3 is due to Douady and Hubbard [DH2], see also [S2, Corollary 3.6] and [Ke,

p. 161]. The statement is refined by employing Schleicher’s notion of fibers, cf. Sec-

tion 3.5: M is locally connected, iff all fibers are points. Hyperbolicity is dense, iff

fibers have no interior. These results were obtained by Douady [D4] from the disked

tree and pinched disk models of M (Section 3.6). Local connectivity of M would

mean that these topological models are homeomorphic to M, thus certain combi-

natorial models are complete descriptions of M. Dense hyperbolicity is conjectured

for rational maps in general [Mu2]. The proof of item 3 also shows that at most two

parameter rays can accumulate or land at the same non-trivial fiber of M, see also

the remark at the end of this section.

Several authors have studied the power series expansion of Φ−1
M and related func-

tions, but this has not led to a proof of MLC. See the discussion in [BFH] and the

references therein. The first example of a non-locally connected bifurcation locus for

a one-dimensional complex analytic family is constructed in [BuHe]. Partial results

towards local connectivity of M have been obtained by means of renormalization.

In some cases it is more important to obtain a polynomial-like restriction of some

mapping and to estimate the modulus of the fundamental annulus, than to carry out

a straightening. The notions of polynomial-like mappings and straightening have

been extended to the case of a proper mapping U → U ′, where U ⊂ U ′ and U is

disconnected, see e.g. [LvS] and the references therein.

Theorem 4.8 (Local Connectivity)

1. If c ∈M, fc is not infinitely renormalizable and has no neutral cycle, then Kc is

locally connected, and M is locally connected at c.

2. M is locally connected at the boundary of hyperbolic components, but Kc may be

non-locally connected, if fc has a neutral cycle.

3. Every non-trivial fiber F of M, and thus every non-hyperbolic component, would

be contained in an infinite nested sequence of tuned copies of M.

4. Suppose that c′, c′′ ∈ M with c′ 6= c′′. They belong to the closed main cardioid,
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or there is a tuned copy Mp with c′, c′′ ∈ Mp, or there is a root c∗ such that c′, c′′

are in different connected components of M\ {c∗}.
5. Suppose that fc is simply p-renormalizable. If Kc contains a non-trivial fiber, it

will belong to the little Julia set Kc, p or to a preimage of it.

Items 1 and 2 are famous but unpublished results of Yoccoz. References/proof :

1.: For non-renormalizable or finitely renormalizable fc without neutral cycles, Yoc-

coz showed that certain puzzle-pieces yield a nested sequence of annuli around the

critical value c and that the series of moduli in the sense of Section 3.5 diverges.

Moreover this fact implies local connectivity of Kc not only at c but everywhere. The

proof requires a detailed combinatorial analysis, it is recounted in [Mi4, H1] using

Branner–Hubbard’s language of tableaux. See [Ka] for an alternative approach. To

transfer the result to the parameter plane, one can bound the moduli of parame-

ter annuli by those of dynamic annuli [H1, Roe]. Schleicher [S2, S3] has remarked

that the proof implies the stronger result that fibers are trivial, and he shows that

this property is preserved under renormalization and under surgeries like that of

Branner–Douady (it is obvious for surgeries satisfying Condition 1.1). Thus the

finitely renormalizable case is reduced to the non-renormalizable case. Lyubich [L1]

and Shishikura have shown that Jc has measure 0 under the assumptions of item 1.

Lyubich [L2] has generalized item 1 to certain infinitely renormalizable mappings fc

with bounded combinatorics. Douady and Hubbard have constructed an infinitely

renormalizable fc such that Kc is non-locally connected, here the periods grow fast

(see [Mi4, p. 105]).

2.: The Pommerenke-Levin-Yoccoz inequality [H1, Le, Pe1] yields a relative bound

on the size of the sublimbs of a hyperbolic component Ω. See [H1] for a recount of

Yoccoz’ proof that M is locally connected at ∂Ω, relying on this inequality. The

proofs in [S2, Theorem 5.2] and [Ke, p. 155] are more combinatorial. [T4] treats the

case of a primitive root by means of parabolic implosion.

3.: If fc has a neutral cycle, the fiber of c in M is trivial. According to the re-

marks on item 1, fc is infinitely renormalizable if the fiber F of c is non-trivial.

McMullen [Mu3] has shown that fc is infinitely simply renormalizable in this case,

thus c belongs to an infinite nested sequence of tuned copies of M. If F intersects

some tuned copy Mp , it must be contained in Mp , since F is connected and the

decorations are attached to Mp at Misiurewicz points, which cannot belong to F .

4.: If c′, c′′ belong to the same fiber F , it is contained in some tuned copy by item 3.

If they belong to different fibers, they are either separated by some root, or they

belong to the closure of some hyperbolic component, and thus to some tuned copy

or to the main cardioid.

5.: According to [S1, Proposition 4.1], Kc has trivial fibers iff the fibers in Kc, p are

trivial. The proof there shows that fibers outside of the grand orbit of Kc, p are

trivial in any case. If Kc is locally connected and contains a cycle of Siegel disks,

Schleicher uses a larger set of external angles for the definition of fibers, but these

are not needed for our statement. (He also excludes the hyperbolic or parabolic case,
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where Kc is locally connected and the statements are obvious.) See [Ha2, p. 56] for

related results.

Shishikura has shown that ∂M has Hausdorff dimension 2 [Sh3] and that the set

of at most finitely renormalizable parameters in ∂M has Lebesgue measure 0 [Sh2].

According to McMullen [Mu3], no non-hyperbolic component of M meets the real

axis, and Świa̧tek [GrSw] has shown that hyperbolicity is dense in R. See [L2] for a

different proof based on renormalization. Note however that there is a set of param-

eters with positive Lebesgue measure in [−2, 1/4], such that fc has an absolutely

continuous invariant measure (and is non-hyperbolic in particular) [Ja]. According

to [L5, L3], this set has full measure in the set of non-hyperbolic parameters, and the

set of infinitely renormalizable real parameters has zero measure. For c ∈ [−2, 1/4]

the Julia set of fc is locally connected [LvS], and Schleicher has noted that the fibers

of Kc are trivial [S3]. Local connectivity of M would imply pathwise connectivity,

and the following theorem gives some partial results towards this property:

Theorem 4.9 (Pathwise Connectivity)

1. Every parameter c0 ∈M with trivial fiber, in particular every postcritically finite

parameter, can be connected with 0 by an arc within M.

2. Every non-trivial fiber meets such an arc A in at most one point. Moreover,

A can be chosen such that hyperbolicity is dense on it and such that Kc is locally

connected for all c ∈ A (except possibly for the endpoint c0).

Remarks and references for a proof :

1. By definition an arc is a homeomorphic image of an interval and a path is a

continuous image of an interval. If two points are connected by a path, they can be

connected by an arc as well [Mi2]. According to the remarks in Section 3.6, there

are locally connected models for M, and the fibers are precisely the preimages of

points under the continuous projection from M onto the abstract model. Schleicher

[S3] lifts arcs in the model to arcs in M, observing that every non-trivial fiber is

contained in some tuned copyMp by the Yoccoz Theorem 4.8, and thatMp contains

a homeomorphic image of [−2, 1/4]. A similar proof was given by J. Kahn for β-type

Misiurewicz points, see [D4]. The Branch Theorem 3.13 shows that an arc to some β-

type Misiurewicz point should be constructed by starting with [−2, 0] and changing

the direction at a finite number of branch points and hyperbolic components. Riedl

[R1] obtains these arcs by quasi-conformal surgery, constructing homeomorphisms

between certain subtrees, which map the β-type Misiurewicz points of lowest orders

in different subwakes to each other. In a special case, this approach was pioneered

in [BD], where Branner and Douady constructed an arc from 0 to γM(1/4). Every

hyperbolic component or branch point is met by an arc to a β-type Misiurewicz

point, and pasting arcs together shows that every parameter with trivial fiber can

be connected with 0.

2. Choose A such that it travels through hyperbolic components along internal

rays. Now hyperbolicity is dense on [−2, 1/4], thus a non-trivial fiber intersects R
in at most one point, and Kc is known to be locally connected for c ∈ [−2, 1/4].
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Both constructions from item 1 show that these properties extend to A, if c0 is

a β-type Misiurewicz point. In the general case, c0 may belong to the closure of

some hyperbolic component, or it is approximated by a sequence of roots and A
is defined piecewise. Then it may happen that Kc is locally connected only for

c ∈ A \ {c0}. Although Riedl employs the Yoccoz Theorem 4.8 to describe the

mappings between subtrees on non-hyperbolic components, the construction of the

arcs does not depend on Yoccoz’ result, since [−2, 0] does not meet a non-hyperbolic

component, and this property is preserved under the surgery. The results of [LvS]

hold for real polynomials zd + c, d = 4, 6, . . . as well, where the Yoccoz Theorem is

not known to be true, and Riedl obtains local connectivity for Julia sets of many

complex zd + c as well.

By the Branch Theorem 3.13, at most two parameter rays can accumulate at the

same non-trivial fiber F . If this is the case, an arc of the above is intersecting F in

one point, and F is the tuned image of a non-trivial fiber intersecting the real line.

4.5 Examples of Homeomorphisms

We aim at giving an overview of the known examples of homeomorphisms between

subsets of M, that are constructed by transferring results from quasi-conformal

surgery in the dynamic plane to the parameter plane. Other applications and other

families are neglected here. The various kinds of renormalization have been discussed

in Section 4.3. We shall use the puzzle-pieces and external angles form Figure 3.2

on page 50, and the concept of sectors around external rays from Section 5.2.

The first example was obtained in [BD] by Branner–Douady, who constructed

a homeomorphism ΦA : M1/2 → T ⊂ M1/3 , where T contains those parameters

c ∈ M1/3 , such that the critical orbit of fc does not meet the puzzle-piece 02. For

c ∈ M1/2 , the mapping g(1)
c is obtained in two steps: first a copy of the puzzle

piece 10 is glued into a cut along the ray Rc(2/3), and gc shall map 10 onto its

copy by the natural identification, and map that copy onto 0 = 00 ∪ 01 by the

mapping corresponding to fc . In a second step, the mapping is modified in a sector

around Rc(5/6), such that it is mapped conformally onto the new piece. A similar

smooth mapping gc is constructed and straightened to a quadratic polynomial fd ,

and the mapping in parameter space is defined by ΦA(c) := d. The Julia set of

gc is larger than that of fc , and the combinatorial properties of gc yield d ∈ T .

The smoothing is possible only if the opening moduli of certain sectors are equal,

which can be achieved in all sublimbs of the period-2 component, and the latter is

treated separately. (See [BD], in particular the erratum, and [Bi, EY, Ha1, R1] for

a discussion of opening moduli.) Now consider d ∈ T and construct a mapping g̃d

from fd , such that g̃d = f 2
d in 12 and such that the puzzle-piece 20 is cut out off

the plane. The Julia set of the smoothed mapping g̃d is a subset of that of fd , the

part in 02 and its preimages are gone. Straightening yields a hybrid-equivalence to

a polynomial fe with e ∈M1/2 , and Φ̃A : T →M1/2 is defined by Φ̃A(d) := e.
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The mapping Φ̃A is independent of the precise choice of the mapping g̃d . This follows

from Proposition 4.2, since the new Julia set is independent of all choices, see item 3

of Remark 5.7 for the sketch of an alternative argument. If c ∈M1/3 and d = ΦA(c),

this independence property shows that g̃d is hybrid-equivalent to fc , thus e = c and

Φ̃A ◦ ΦA is the identity on M1/2 , and ΦA is injective. It is not straightforward to

show independence for ΦA and thus that ΦA ◦ Φ̃A is the identity on T . Note that

ΦA(M1/2) ⊂ T is compact, connected, full and contains all Misiurewicz points in

∂T , which implies surjectivity by a topological argument.

The cut- and paste techniques for Riemann surfaces can be avoided by the following

construction: for c ∈ M1/2 , gc is defined by choosing a conformal mapping φ from

01 onto a sector around Rc(2/3) and setting gc = φ in 01 and gc = fc ◦ φ−1 in the

sector. The mapping is smoothed in three smaller sectors, and in the sector around

Rc(1/3) we require g3
c = f 2

c , so that all iterates of gc have a uniformly bounded

dilatation. For the inverse construction, consider d ∈ T and set g̃d := f 2
d in 12.

Now 20 and a sector around Rd(1/7) are mapped to each other quasi-conformally,

such that g̃2
d = f 3

d within the sector. A simulation of these constructions is shown in

Figure 1.2 on page 13, the Julia sets are determined by iterating a piecewise defined

mapping, however this mapping is affine in certain regions and discontinuous.

We refer to the Branner–Douady homeomorphism in Sections 1.3, 4.4, 5.5, 7.5, 8.1,

9.1 and 9.4. T is obtained by cutting off a countable family of parts from M1/3 ,

and for d = ΦA(c) the Julia set of fc is homeomorphic to the Julia set of g̃d , which is

obtained by cutting off a countable family of branches from Kd . An application of

ΦA is to show the existence of an arc from 0 to γc(1/4) withinM1/3 , which is just the

image of the real line under ΦA. The Riedl homeomorphisms below are motivated

by constructing arcs as well, and by proving local connectivity of Julia sets, cf. the

discussion in the previous section. The Branner–Fagella homeomorphisms show that

certain subsets of M are mutually homeomorphic, and are thus closer to the aim

of our work. In these cases the subsets are defined by disconnecting M at a finite

number of pinching points, not by cutting off an infinite family of decorations.

In [BF1], Branner–Fagella have constructed a homeomorphism φp/q from the p/q-

limb of M onto a limb of the connectedness locus for the family λz(1 + z/q)q, see

also the expositions in [F1, F2], and [Bu3] for a related result. By composition the

homeomorphisms Φq
pp′ = φ−1

p′/q ◦φp/q : Mp/q →Mp′/q between limbs of equal denom-

inators are obtained. The paper [BF1] also introduced the concept of combinatorial

surgery, which means that a mapping θ 7→ θ̃ of angles is constructed combinatorially,

such that γM(θ) is mapped to γM(θ̃) by Φq
pp′ . For each limb Mp/q , an orientation-

reversing mapping of the limb onto itself is obtained by φ−1
p/q ◦ φp/q = Φq

p′p ◦ Φq
pp′ ,

which we shall call the reflection of the limb. Its fixed points form an arc of sym-

metry within the limb, which is obtained from simple or crossed renormalization as

well. We refer to the Branner–Fagella homeomorphisms in Sections 1.3, 5.1, 5.4,

6.3, 7.5, 8.1, 9.1, 9.2 and 9.4.

Schleicher [unpublished] has suggested an alternative construction for these ho-
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meomorphisms by a surgery within the quadratic family. In [BF2], Branner–Fagella

combined this idea with the approach of adopting the proof of the Straightening

Theorem for analytic quadratic-like mappings to the piecewise defined quasi-regular

mappings gc constructed now, cf. also the references before Theorem 4.3. In this way

they obtained an extension of the homeomorphisms to neighborhoods of the limbs,

cf. items 1 and 2 of Remark 5.6. We shall sketch the construction of gc , c ∈M1/3 ,

for Φ3
12 : M1/3 →M2/3 : we have gc = f−1

c : 20 → 12, gc = f−1
c (−z) : 00 → 12, and

gc = f 2
c in the remaining puzzle-pieces 01∪12∪02. The mapping is smoothed by a

quasi-conformal interpolation in sectors around the three rays landing at αc , and we

require g3
c = f 3

c there. Now the filled-in Julia set stays the same, but the combina-

torial rotation number at αc is changed from 1/3 to 2/3, thus gc is hybrid-equivalent

to a polynomial fd with d ∈M2/3 , and Φ3
12(c) := d defines the homeomorphism.

Riedl [R1] has constructed a variety of homeomorphisms between subsets of M
(and of Multibrot sets), such that every β-type Misiurewicz point can be connected

with 0 by an arc within M, which is obtained by mapping the real line with a

suitable composition of these homeomorphisms. The mappings are defined between

certain trees, i.e. suitable subsets of sublimbs or branches each containing the β-type

Misiurewicz point of lowest order, and they are obtained for any pair of sublimbs of

a hyperbolic component, or of branches behind a Misiurewicz point. In the first case

they are considered as generalizations of the Branner–Douady and Branner–Fagella

homeomorphisms. Note however that the mappings between trees in sublimbs are

not defined on all of the sublimbs, if the period of the hyperbolic component is greater

than 1. To permute branches behind some Misiurewicz point, the mapping gc =

φc ◦ fc is obtained as follows: on some branch behind the corresponding preperiodic

point in Kc , φc is defined piecewise in the form f−k
c ◦(±f l

c) by iterates, such that this

branch is mapped onto another one. The other branch is mapped to the exterior

of Kc by a quasi-conformal mapping, and a sector in the exterior is mapped to

a neighborhood of the former branch by a Riemann mapping. The homeomorphic

trees in the two branches are obtained by cutting off an infinite family of branches in

both domain and range, and the proofs of continuity and bijectivity are completed

only in the quadratic case by employing the Yoccoz’ Theorem 4.8. The problem

is that parts are added to and cut off from the Julia sets at the same time, so

that the construction of hybrid-equivalences is more difficult than in the proof of

“independence of the choices” for Φ̃A. We refer to the Riedl homeomorphisms in

Sections 1.3, 4.4, 6.3, 7.5 and 9.4.
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5 Constructing Homeomorphisms

In Theorem 5.4 we present a general approach to obtain a homeomorphism h : EM →
EM from a piecewise defined g(1)

c , with g(1)
c = fc on Kc except on a set Ec , which cor-

responds to EM ⊂M in the sense of Proposition 3.14. We give a detailed proof and

include some comments on generalizations and possible alternative techniques. The

homeomorphism from Theorem 1.2 is our favorite example, and further applications

are given in the following chapters.

5.1 Combinatorial Definitions

Suppose that EM is a subset of M, defined by intersecting M with a strip bounded

by four parameter rays (case A), or with a sector bounded by two parameter rays

(case B). We shall assume for convenience that the corresponding set Ec ⊂ Kc

consists of only two pieces, where g(1)
c is defined differently. Several generalizations

are discussed in Remark 5.3. According to Section 1.1, we must assume that g(1)
c

satisfies Condition 1.1, i.e. it is given by compositions of fc , branches of f−1
c and

z 7→ −z on these pieces. Otherwise domain or range of h would be obtained by

disconnecting M at an infinite family of pinching points. The example of case A

from Section 1.2 is described in Figure 5.1 using the present notation, and further

examples are given in Sections 6.2, 7.4, 7.5 and 8.2. Case B is applied in Sections 8.2

and 8.3. We shall employ the partial order ≺ and the notion of characteristic points

from Sections 3.3 and 3.4, and the angle-doubling map F(θ) = 2θmod 1 on S1.

Assumption A: Suppose that there are rational angles 0 < Θ−
1 < Θ−

3 < 1 and

0 < Θ+
1 < Θ+

3 < 1, such that the corresponding parameter rays are landing in pairs

at two Misiurewicz points a := γM(Θ−
1 ) = γM(Θ+

3 ) and b := γM(Θ−
3 ) = γM(Θ+

1 ).

Assume that [Θ−
1 , Θ−

3 ] ∩ [Θ+
1 , Θ+

3 ] = ∅ and define EM as the intersection of M with

the closed strip bounded by these four rays. If a or b is a branch point, then EM

shall be contained in a single branch, i.e. EM is the union of {a, b} and a single

connected component of M \ {a, b}. It is compact, connected and full. Suppose

in addition that there are rational angles Θ±
2 , Θ̃±

2 with Θ−
1 < Θ−

2 < Θ̃−
2 < Θ−

3

and Θ+
1 < Θ̃+

2 < Θ+
2 < Θ+

3 , such that γc(Θ
−
i ) = γc(Θ

+
3−i) and γc(Θ̃

−
2 ) = γc(Θ̃

+
2 )

for all c ∈ EM , and such that the four landing points of the eight dynamic rays

are distinct. Four open strips Vc, Wc, Ṽc, W̃c are defined by dynamic rays as in

Figure 5.1. Consider the strip Pc := Vc ∪Wc = Ṽc ∪ W̃c , and define Ec := Kc ∩ Pc .

Typical examples of the sets EM and Ec are provided by edges. By Proposition 3.14,
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none of the eight angles is returning to (Θ−
1 , Θ−

3 )∪(Θ+
1 , Θ+

3 ) under the doubling map

F, and the four landing points in the dynamic plane are characteristic preperiodic

points. EM is a proper subset of some limb of M, and we have a ≺ b or b ≺ a.

Assume for the moment that a ≺ b, then 0 < Θ−
i < Θ+

i < 1. For all c ∈ EM ,

no iterate of the four pinching points is behind γc(Θ
−
1 ) in the open sector between

Rc(Θ
−
1 ) and Rc(Θ

+
3 ). (It may happen that fk

c (γc(Θ
−
3 )) is behind γc(Θ

−
1 ) in another

subwake.) It is allowed that fk
c (γc(Θ

−
3 )) = γc(Θ

−
1 ) for some k, see also the second

remark after Theorem 6.4, and this fact will require special attention at some steps

in the proof of Theorem 5.4. In this case, γa(Θ−
3 ) may be a pinching point of Ea ,

but this pathology will be ruled out by the additional assumption in Definition 5.1.

Analogous statements hold in the case of b ≺ a, then we have 0 < Θ+
i < Θ−

i < 1,

and it may happen that fk
c (γc(Θ

−
1 )) = γc(Θ

−
3 ). In the examples of surgery we know,

γc(Θ
±
2 ) and γc(Θ̃

±
2 ) are not branch points, and they are not iterated to γc(Θ

−
1 ) or

γc(Θ
−
3 ). But these phenomena can happen in the analogous situation where Pc is

divided into three strips.

Θ−
1Θ−

2Θ̃−
2

Θ−
3Θ+

1

Θ̃+
2

Θ+
2

Θ+
3

Θ−
1

Θ−
2

Θ−
3Θ+

1

Θ+
2

Θ+
3

Θ−
1

Θ̃−
2

Θ−
3Θ+

1

Θ̃+
2

Θ+
3

Vc

Wc

Ṽc

W̃c

Figure 5.1: The edges and strips for gc and h of Section 1.2, with the parameter plane
on the left. We have gc = g(1)

c on Kc and g(1)
c = fc ◦ ηc , with ηc = f−2

c ◦ (−f5
c ) : Vc → Ṽc ,

ηc = f−6
c ◦ (−f3

c ) : Wc → W̃c . In the notation of Definition 5.1, we have Θ−
1 = 11/56,

Θ−
2 = 199/1008, Θ̃−

2 = 103/504, Θ−
3 = 23/112, Θ+

1 = 29/112, Θ̃+
2 = 131/504, Θ+

2 =
269/1008 and Θ+

3 = 15/56. The first-return numbers are kw = k̃v = 4, kv = k̃w = 7.

Assumption B: Case B is similar to case A, but now Pc is a sector bounded by

Rc(Θ
+
1 ) and Rc(Θ

−
3 ), and EM is a branch of M behind a Misiurewicz point b :=

γM(Θ+
1 ) = γM(Θ−

3 ). Consider another Misiurewicz point a in EM , which shall have

only one external angle, but this angle shall be denoted both by Θ+
3 and by Θ−

1 . Pc

is subdivided into a strip Wc and a sector Vc by Rc(Θ
±
2 ), and into a strip W̃c and a

sector Ṽc by Rc(Θ̃
±
2 ). All relevant angles shall not bifurcate for c ∈ EM . In the same

way we may start with a sector centered at a pinching Misiurewicz point a, consider

strips Vc and Ṽc and sectors Wc and W̃c , and a second Misiurewicz point b with the

only external angle Θ−
3 = Θ+

1 .

Denote by kv the minimal k ∈ N with fk
c (Vc) ∩ Vc 6= ∅, and define kw, k̃v, k̃w

analogously. We have fk
c (Ec ∩ Vc) ∩ Ec = ∅ for 1 ≤ k ≤ kv − 1, and fkv

c (Ec ∩ Vc) ⊃
Ec\{γc(Θ

−
1 ), γc(Θ

−
3 )}. Note that fk

c (γc(Θ
±
2 )) /∈ Ec\{γc(Θ

−
1 ), γc(Θ

−
3 )} for k ∈ N, thus

kv is well-defined, i.e. independent of c ∈ EM . Now Fkv maps both of the intervals
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(Θ−
1 , Θ−

2 ) and (Θ+
2 , Θ+

3 ) 1:1 onto intervals containing (Θ−
1 , Θ−

3 )∪ (Θ+
1 , Θ+

3 ), thus in

each of the former intervals there is one angle of exact period kv and no periodic

angle of a smaller period. Therefore the part of EM between a and γM(Θ±
2 ) contains

one primitive hyperbolic component of period kv , which is separating a from b, and

no component of a smaller period. Analogous statements as for Vc hold for Wc, Ṽc

and W̃c . By the inclusions we have kv ≥ k̃v and k̃w ≥ kw . These first-return

numbers are bounded below by the numerator of the limb containing EM .

Definition 5.1 (Preliminary Mapping g(1)
c )

Under the Assumption A or B, suppose that there are lv, l̃v, lw, l̃w ∈ N0 with

f lv
c (Vc) = −f l̃v

c (Ṽc) and f lw
c (Wc) = −f l̃w

c (W̃c), and that the four mappings are

injective on these strips (or sectors). Define ηc := f−l̃v
c ◦ (−f lv

c ) : Vc → Ṽc ,

ηc := f−l̃w
c ◦ (−f lw

c ) : Wc → W̃c and ηc := id on C \ Pc . Suppose further that

the orientation of the two strips is preserved, i.e. ηc extends continuously to γc(Θ
±
i ),

but it will have shift discontinuities on the six corresponding rays. For c ∈ EM , define

g(1)
c := fc ◦ ηc and g̃(1)

c := fc ◦ η−1
c .

Injectivity of the four iterates of fc on the strips is equivalent to lv < kv , lw < kw ,

l̃v < k̃v , l̃w < k̃w . Moreover we have lv > l̃v and lw < l̃w because of the strict

inclusions Vc ⊂ Ṽc and Wc ⊃ W̃c . Now the two periodic points of lowest period in

Ec belong to Ṽc \Vc = Wc \W̃c , and we have k̃v = kw . All of these statements on the

dynamics are independent of c ∈ EM , since the relevant angles are not bifurcating.

For Θ ∈ {Θ±
1 , Θ±

3 } we have ηc(Rc(Θ±0)) = Rc(Θ), and ηc(Rc(Θ
−
2 ±0)) = Rc(Θ̃

−
2 ),

ηc(Rc(Θ
+
2 ± 0)) = Rc(Θ̃

+
2 ). The Misiurewicz point a has preperiod l̃v + 1 ≤ k̃v

and ray period dividing lv − l̃v , and b has preperiod lw + 1 ≤ kw and ray period

dividing l̃w − lw . Note that γc(Θ
−
2 ) and γc(Θ̃

−
2 ) are associated to the same cycle

with ray period dividing lv − l̃v + l̃w − lw . Now k̃v is the minimal integer k with

(fk
c ◦ ηc)(Vc) ∩ Pc = (fk−1

c ◦ g(1)
c )(Vc) ∩ Pc 6= ∅. Thus for all z ∈ Ec ∩ Vc we have

(g(1)
c )k(z) = (fk−1

c ◦ g(1)
c )(z) /∈ Ec for 1 ≤ k < k̃v , and (g(1)

c )k̃v(z) = f k̃v−l̃v+lv
c (z)

belongs to Ec for some z ∈ Ec ∩ Vc . In particular kv = k̃v − l̃v + lv > k̃v . Analogous

results hold for Vc :

Lemma 5.2 (Combinatorial Properties)

The regions and mappings according to Definition 5.1 enjoy the following additional

properties:

1. We have k̃v = kw , kv − k̃v = lv − l̃v > 0 and k̃w − kw = l̃w − lw > 0.

2. For z ∈ Ec ∩ Vc we have (g(1)
c )k(z) = (fk−1

c ◦ g(1)
c )(z) /∈ Ec for 1 ≤ k < k̃v , and

(g(1)
c )k̃v(z) = fkv

c (z). For z ∈ Ec ∩Wc we have (g(1)
c )k(z) = (fk−1

c ◦ g(1)
c )(z) /∈ Ec for

1 ≤ k < k̃w , and (g(1)
c )k̃w(z) = fkw

c (z).

In the following section we shall construct a quasi-regular quadratic-like mapping

gc , which coincides with g(1)
c on Kc , and Theorem 5.4 yields the homeomorphism

h : EM → EM by straightening gc to a quadratic polynomial fd and setting h(c) := d.

Some aspects of more general constructions are discussed in the following remark:
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Remark 5.3 (Generalizations)

1. Suppose that a homeomorphism h : EM → EM shall be constructed by a surgery

satisfying Condition 1.1, such that a connected set Ec corresponding to EM is cut into

finitely many pieces in a uniform way and g(1)
c = fc on Kc\Ec . Then h is obtained by

the same techniques as in the case of two pieces, and in Section 8.3 we shall discuss

examples with three and four pieces. The construction will be of the form g(1)
c = fc◦ηc

again, which guaranties that g(1)
c is expanding, since ηc is well-defined only under

conditions analogous to lv < kv and then gc satisfies an analog of Lemma 5.2. It

is no restriction to assume that the analogs of γc(Θ
−
i ) are strictly preperiodic, since

otherwise gc or g̃c would not be expanding. A trivial generalization is given when

Ec corresponds to a subset of EM , e.g. the homeomorphism from Theorem 1.2 can

be extended to the part of M behind γM(10/63) by the same construction of gc .

If h has any fixed points besides the vertices, which is always the case when EM is

defined by disconnecting M at more than two points, then it may be simpler to

construct a similar homeomorphism piecewise. Cf. item 1 of Remark 8.2.

2. The most general construction of g(1)
c according to Condition 1.1 will be the fol-

lowing one: EM is defined by disconnecting M at a finite number of pinching points,

and Kc is cut into finitely many pieces by rational rays that do not bifurcate for

c ∈ EM , i.e. no iterate of these angles corresponds to the relative interior of EM in M.

Now g(1)
c is constructed by iterates of fc , such that it is orientation-preserving and

2:1. Then we want to obtain a smooth mapping gc , conjugate it to fd and define

h(c) := d, where the range ẼM of h is determined combinatorially from the orbits

of points corresponding to the vertices of EM under g(1)
c . It is a project of further

research to determine necessary and sufficient conditions on the combinatorial set-

ting, such that h is well-defined and a homeomorphism. We must require that g(1)
c is

expanding in some sense, this condition is always satisfied in the setting from item 1.

A necessary condition is that the potential level is increased whenever an iterate of

a piece meets that piece again, and presumably this condition is also sufficient to

construct preliminary bounded domains piecewise as in Section 5.2. Another ques-

tion is how to obtain g̃(1)

d , here it will be helpful to express fc in terms of g(1)
c . When

these combinatorial constructions are done, the smoothing of g(1)
c and the proofs of

bijectivity and continuity will be straightforward. Now it can happen that gc 6= fc

at the critical point 0, or that some pieces are bounded by periodic rays, in which

case the smoothing in the appropriate sectors is chosen such that some iterate of gc

is analytic there.

3. We shall discuss some examples of more general constructions according to item 2:

one example is the construction of the Branner–Fagella homeomorphisms within

the quadratic family according to Schleicher’s suggestion, cf. Section 4.5 and [BF2].

Another example is described after the proof of Lemma 8.3, here we have EM ⊂ ẼM

and the number of pieces is different for g(1)
c and g̃(1)

d . A homeomorphism similar to

that of Section 1.2 is obtained by performing the surgery not on the edge containing

c but on its first or second iterate. However, if this kind of surgery is performed on

an edge at αc , then g(1)
c will not be expanding.
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4. While a general theorem shall be feasible in the setting of item 2, it will be much

harder when the use of cut- and paste techniques or of Riemann mappings is allowed.

In the examples of surgery within the quadratic family, EM or ẼM is obtained by

disconnecting M at a countable family of pinching points, and we believe that this

will always be the case. Note however that this does not happen for the Branner–

Fagella construction leaving the quadratic family. It would be desirable to have a

general technique including the case that pieces are added and cut out at the same

time, cf. the remarks on Riedl homeomorphisms in Section 4.5.

5. When a variety of homeomorphisms between subsets of M is known, new ho-

meomorphisms are obtained by compositions or by defining them piecewise, see

e.g. items 2 and 3 of Theorem 6.6, items 1 and 2 of Proposition 7.7, and the proof

of Proposition 9.10, items 1 and 4. A different approach is taken in item 4 of Theo-

rem 6.6, and in items 3 and 4 of Proposition 7.7: a subset of M is known to consist

of a family of pairwise homeomorphic building blocks plus some trivial fibers, and

a homeomorphism is constructed by permuting the building blocks (respecting the

partial order ≺). Some of these mappings are not orientation-preserving at branch

points. In [LaS], a homeomorphism of the abstract Mandelbrot set is constructed

combinatorially, cf. items 3 and 4 of Remark 9.6. In all of these cases, the homeomor-

phism in the parameter plane builds on the dynamics, and there is a well-understood

relation between the dynamics of fc and fd , d = h(c). A more abstract construction

is conceivable: when branch points with certain numbers of branches are in some

sense dense in EM and ẼM , one might argue that a homeomorphism can be defined

inductively, but there would be no clear relation between the dynamics.

5.2 Construction of gc

For c ∈ EM , the mapping g(1)
c was defined piecewise in the previous section. Now we

shall construct domains Uc , U
′
c and a suitable quasi-regular quadratic-like mapping

gc : Uc → U ′
c with gc = g(1)

c on Kc . In Section 5.4, the construction will be extended

to parameters c in the exterior of M. The description will be adapted to case A,

but case B requires only a few obvious modifications. The preliminary mapping g(1)
c

is discontinuous on six dynamic rays Rc(Θ
±
i ), and we will construct quasi-conformal

interpolations in sectors Tc(Θ
±
i ) around these rays. The periodic images of these

sectors shall be forward invariant, to avoid that some orbit visits the sectors Tc

arbitrarily often. This property requires that the sectors and domains are bounded

regions, and an extension of gc to the plane could only be obtained by additional

operations, cf. items 2 and 3 of Remark 5.6. It will be convenient to construct the

domains and mappings in the exterior of the unit disk, and they are transfered to

the dynamic plane of fc via the Boettcher conjugation Φc . Then we have gc := g(1)
c

on Kc and gc = Φ−1
c ◦ G ◦ Φc : Uc \ Kc → U ′

c \ Kc with Uc := Φ−1
c (U \ D) ∪ Kc ,

U ′
c := Φ−1

c (U ′ \ D) ∪ Kc and G : U \ D → U ′ \ D. The preliminary mapping G(1) is

related to g(1)
c analogously. Do not confuse G with the Green’s function Gc or GM .
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In the following section, gc will be straightened to a quadratic polynomial fd , and

the mapping h : EM → EM is defined by h(c) := d. The value of d is independent

of all choices, but we shall assume that gc is constructed in the same way for all

c ∈ EM , i.e. we fix the choice of G : U \D → U ′ \D independent of c. This simplifies

the proof that h is a homeomorphism, and it is crucial for the extension of h to

the exterior of EM . An approximation to the actual domains is shown in Figure 5.2,

both in the dynamic plane and in the exterior of D.

-
Φc

Figure 5.2: Left: a part of the fundamental annulus between ∂Uc and ∂U ′c is shown in
gray. Right: an approximation to the annulus U ′ \ U in the exterior of D.

Preliminary Domains

Now we shall define preliminary bounded domains, such that the corresponding

restriction of g(1)
c is proper of degree 2. Afterwards the boundaries and the mapping

will be smoothed at the same time. Here the boundaries are given piecewise by

equipotential lines, i.e. log |Φc(z)| is bounded by a function of arg(Φc(z)), which is

discontinuous and piecewise constant. The potential levels will be defined recursively

for various intervals of angels. There is a piecewise linear mapping G : S1 → S1

with g(1)
c (Rc(θ)) = Rc(G(θ)), cf. Section 9.1. It is expanding in the sense that

every dyadic angle is iterated to 0, or that some fixed iterate is strictly expanding:

(Gk̃w)′(θ) ≥ 2kw . The mappings G(1) and G can be expressed piecewise by iterates of

F and F in the same way as g(1)
c is defined by iterates of fc , and we have e.g. Gk̃w(θ) =

Fkw(θ) for θ ∈ (Θ−
2 , Θ−

3 ) ∪ (Θ+
1 , Θ+

2 ), and (G(1))k̃w(z) = F kw(z) when arg(z) is

in these intervals. The derivative of G is always a suitable power of 2, where

the exponent is the number of forward iterations minus the number of backwards

iterations of F. On the corresponding sets, G(1) is multiplying the potential by the

same power of 2.

Define I0 := (Θ−
2 , Θ−

3 ) ∪ (Θ+
1 , Θ+

2 ), the union of the two intervals of angles corre-

sponding to the strip Wc . Set n := l̃w − lw = k̃w − kw > 0 and for 1 ≤ j ≤ n, the

set Ij := G−j(I0) consists of 2j+1 disjoint intervals. All of the sets I0, . . . , In are

pairwise disjoint, since otherwise for c ∈ EM there would be 0 ≤ j1 < j2 ≤ n and a
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z ∈ Kc with (g(1)
c )j1(z) ∈ Wc and (g(1)

c )j2(z) ∈ Wc . Then (g(1)
c )j1(z) would return to

Wc after j2 − j1 iterations, in contradiction to j2 − j1 ≤ n < k̃w and gk̃w
c = fkw

c in

Wc by Lemma 5.2.

Choose a small ε > 0 and a potential level u > 0, then in a first approximation

assume that ∂Uc is given by Gc(z) = u and ∂U ′
c is given by Gc(z) = 2u, thus

U = Dexp(u) and U ′ = Dexp(2u) . We have G(1)(∂U) 6= ∂U ′, since G(1) 6= F on

the set corresponding to Pc . The definition is modified recursively by specifying a

potential level for certain intervals of angles. Since g(1)
c is contracting on Wc , the

inner boundary must be pushed out there: on I0 we take 2nu for the inner boundary

and 2n+εu for the outer boundary. Since the latter potential level is greater than 2u,

we cannot take u for the inner boundary at I1 . For 1 ≤ j ≤ n, each of the intervals

in Ij is mapped by G onto an interval in Ij−1 , expanding it by a positive power of 2.

The potential level for the inner boundary is chosen for an interval in Ij such that

it is mapped by that power of 2 to the potential level of the corresponding interval

in Ij−1 , and the potential for the outer boundary is by a factor 2ε larger than that

of the inner boundary. At each step, the potential of the inner boundary is reduced

at least by 1 − ε. Provided ε < 1/n, the inner potential is less than 2u for In and

the outer potential shall be 2u there, so that no modifications are needed on further

preimages. Finally we choose the potential of the inner boundary as 2−(kv−k̃v) on

(Θ−
1 , Θ−

2 ) ∪ (Θ+
2 , Θ+

3 ), the intervals corresponding to Vc , except on those intervals

in (Ij) contained in (Θ−
1 , Θ−

2 ) ∪ (Θ+
2 , Θ+

3 ). Now g(1)
c is a proper mapping between

the preliminary domains (neglecting the six external rays), and the inner boundary

is really inside of the outer one, although there is a common boundary on some rays.

In our applications we will have k̃w > 2kw , thus n > kw , and then G(1) = F in the

regions corresponding to Ij , 1 ≤ j ≤ n.

Smoothing the Mapping and the Domains

Sometimes it is convenient to work in the right halfplane, which covers C \ D by

the exponential function, and we shall use the variable w = ρ + iτ = log z. In that

representation, equipotential lines become vertical lines and external rays become

horizontal lines. The lifts F̂ and Ĝ of F and G are linear in certain strips, we

have F (w) = 2w and Ĝ(2πiθ) = 2πiG(θ). The preliminary mappings have shift

discontinuities on six rays, i.e. the limits when approaching a ray from either side

are shifted relative to each other along some ray. E.g. the behavior of g(1)
c at Rc(Θ2)

is described by

Ĝ(1)(ρ+ 2πi(Θ−
2 − 0)) = 2−(kv−k̃v−1)ρ+ 4πiΘ̃−

2

Ĝ(1)(ρ+ 2πi(Θ−
2 + 0)) = 2k̃w−kw+1ρ+ 4πiΘ̃−

2 .

By modifying Ĝ(1), G(1) or g(1)
c in neighborhoods of these rays, this type of discontinu-

ity can be removed without disturbing the global picture of an orientation-preserving

2:1 mapping. For θ ∈ Q and a fixed small slope s > 0 that is suppressed in the
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notation, define the sectors

Ŝ(θ) := {w = ρ+ iτ | − sρ ≤ τ − 2πθ ≤ sρ , ρ > 0} (5.1)

in the right halfplane, S(θ) := exp(Ŝ(θ)) in the exterior of D and Sc(θ) := Φ−1
c (S(θ))

in the exterior of Kc for c ∈ M. If these sets are restricted to potentials ≤ η and

sη < π, the sectors S(θ) and Sc(θ) do not have self-intersections. S(θ) contains

a Stolz angle and Lindelöf’s Theorem 2.1 shows that Sc(θ) behaves like a sector

should, i.e. the bounding curves are both landing at the vertex γc(θ). If θ is periodic

under F or G, then Ŝ(θ) is forward invariant under the corresponding iterate of F̂ or

Ĝ(1). For the moment let us assume that none of the three vertices of discontinuity

γc(Θ
−
i ) is ever iterated to another one. The preliminary boundaries have steps at

the six angles Θ±
i and some preimages of four angles. Consider a finite collection of

sectors S(θ) of slope s, where the angles θ are the points of steps of the boundaries

plus all of their iterates under G. If su is sufficiently small, these sectors intersected

with the preliminary U ′ are mutually disjoint, and their union is forward-invariant

under G(1) as long as the iterates stay within U ′.

(((((((((((

hhhhhhhhhhh

(((((((((((((((

hhhhhhhhhhh

(((((((((((

hhhhhhhhhhhhhhh

2−nvu u 2u 2nwu

2nw+εu

2πiΘ−
1

T̂ (Θ−
1 )

2πiΘ−
2

T̂ (Θ−
2 )

2πiΘ−
3

T̂ (Θ−
3 )

Ĝ(w) = 2w

Ĝ(w) = 2−(nv−1)w + i const.

Ĝ(w) = 2nw+1w − i const.

Ĝ(w) = 2w

Figure 5.3: Part of the smoothed boundaries and three of the six sectors T̂ in the right
halfplane, with nv = kv − k̃v and nw = n = k̃w − kw . The image assumes k̃w > 2kw ,
otherwise the boundaries will have additional bumps between Θ−

1 and Θ−
2 .

Suppose that Θ ∈ {Θ±
i } and Θ′ := G(Θ), then there are are different integers n±

and locally we have Ĝ(1)(w + 2πiΘ) = 2πiΘ′ + 2n−+1w for Im(w) < 2πΘ, and the

inner boundary is given by Re(w) = 2−n−u. For Im(w) > 2πΘ we have analogous

formulas where n− is replaced with n+ . Choose a monotonous C1-mapping φ :

[−s, s] → R with φ(±s) = 2n±+1 and φ′(±s) = 0, and define Ĝ : Ŝ(Θ) → Ŝ(Θ′)

by Ĝ(ρ + i(τ + 2πΘ)) := 2πiΘ′ + φ(τ/ρ) · (ρ + iτ). Now Ĝ is C1 and matches
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smoothly with Ĝ(1) on the bounding lines of the sector, but it is not differentiable

at the vertex. The Beltrami-coefficient of Ĝ is 0-homogeneous, i.e. a function of

τ/ρ, and thus it stays bounded away from 1 at the vertex, and Ĝ is quasi-conformal

on Ŝ(Θ). The inner boundary is smoothed in Ŝ(Θ) by taking the preimage of the

equipotential line Re(w) = 2u under Ĝ, and we define the sector T̂ (Θ) := Ŝ(Θ)∩ Û .

The outer boundary is modified by choosing a smooth curve within Ŝ(Θ), such that

it is outside of the inner boundary and monotonous, cf. Figure 5.3. Sometimes we

require the additional Condition 5.5, i.e. Ĝ = Ĝ(1) = F̂ outside of the strips P̂ , in

particular in certain half-sectors. Then four of the six mappings φ are constant on

either [−s, 0] or [0, s]. In [BD, BF1, BF2] the boundaries are chosen first, and a

diffeomorphism between quadrilaterals is pulled back to fill out the sector. Now we

have modified Ĝ(1) to Ĝ in the six sectors. In sectors around some preimages of

the four rays bounding Ŵ the mapping Ĝ = F̂ is analytic but the boundaries still

have a step. Recursively we define the inner boundary by taking a preimage and

then choose the outer boundary outside of the inner one as a smooth curve. This

completes the construction of mapping and domains in the right halfplane, and we

obtain G : U \D → U ′ \D and gc : Uc → U ′
c . The domains are bounded by smooth

curves, and the latter mapping is quasi-regular, C1 except at the three points γc(Θ
−
i ),

and analytic except in the six sectors Tc :=
⋃
Tc(Θ

±
i ) with Tc(Θ

±
i ) := Sc(Θ

±
i ) ∩ Uc .

(Continuity at the three vertices is obtained from Lindelöf’s Theorem.) We will not

make use of the fact that the iterated preimages of Tc form a countable family of

mutually disjoint sectors (cf. item 3 of Remark 5.7). Extra care must be taken if

Wc is before Vc and the vertex γc(Θ
−
1 ) is iterated to γc(Θ

−
3 ): then the smoothed

boundary at Θ−
1 and Θ+

3 may depend on the previous construction at the other

four angles and some preimages. A similar argument works if γc(Θ
−
2 ) is iterated to

γc(Θ
−
3 ).

Properties of gc

Now Uc, U
′
c are quasi-disks with Uc ⊂ U ′

c , and gc : Uc → U ′
c is quasi-regular and

proper of degree 2. The critical point is 0 and the critical value is c. The mapping

is holomorphic except in the six sectors Tc(Θ
±
i ). It may happen that some of the

sectors are mapped to a sector at the lower vertex under the iteration, but any orbit

visits at most two of the sectors. Thus the dilatation of all iterates gn
c is uniformly

bounded on their domains, by the square of the dilatation of gc . The filled-in Julia

set in the sense of Definition 4.1 coincides with the filled-in Julia set Kc of fc : if

z ∈ Kc , all iterates stay within Kc . If z ∈ Uc \ Kc , its orbit stays away from Kc

and eventually from Tc . Now gk̃w
c = fkw

c in Wc and gk̃v
c = fkv

c in Vc shows that

there would be sequences nj, lj → ∞ with g
nj
c (z) = f

lj
c (z) if these were defined for

arbitrarily high iterates, contradicting f
lj
c (z) → ∞. Finally, gc is holomorphic in a

neighborhood of Kc \ {γc(Θ
−
i )} and thus ∂gc = 0 almost everywhere on Kc , and gc

is quadratic-like.

Suppose that z ∈ Ec is periodic of period p under fc . Then it is periodic of some
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period q under g(1)
c , with q = p−v(kv− k̃v)+w(k̃w−kw), where v and w denote how

often the orbit of z (under fc or g(1)
c ) visits Vc and Wc in one cycle. Now 0 ≤ v ≤ p/kv

and 0 ≤ w ≤ p/kw yields k̃v

kv
p ≤ q ≤ k̃w

kw
p. These inequalities are sharp: two points

in Vc are kv-periodic under fc and k̃v-periodic under g(1)
c , and two points in Ṽc ∩Wc

are k̃v = kw-periodic under fc and k̃w-periodic under g(1)
c . Note that fp

c = gq
c in a

neighborhood of z, thus the multipliers are equal. In the following sections we will

work with the hybrid equivalence ψc ◦ gc ◦ψ−1
c = fd . If z is attracting for fp

c and gq
c ,

it belongs to the interior of Kc , and the multiplier (f q
d )′(ψc(z)) will be the same. If

z is repelling, then ψc(z) is repelling as well, but the multipliers are in general not

equal, since ψc will not be (real or complex) differentiable at z. If z ∈ Kc \ Ec , then

z may be periodic under fc but preperiodic under gc , or vice versa.

5.3 Properties of h

Theorem 1.2 is a special case of the following theorem, which yields a homeomor-

phism h : EM → EM for a piecewise defined g(1)
c = fc ◦ ηc according to Definition 5.1.

In case B we have Θ+
3 = Θ−

1 or Θ−
3 = Θ+

1 , and with this notation the theorem has

the same formulation in both cases:

Theorem 5.4 (Construction and Properties of h)

1. For c ∈ EM , there are domains Uc , U
′
c and a quasi-regular quadratic-like mapping

gc : Uc → U ′
c with filled-in Julia set Kc and gc = g(1)

c on Kc . If z ∈ Ec is p-periodic

under fc , then it is q-periodic under gc with k̃v

kv
p ≤ q ≤ k̃w

kw
p.

2. There are a unique d ∈ EM and a hybrid equivalence ψc with gc = ψ−1
c ◦ fd ◦ ψc

on Uc . On Kc , ψc is determined uniquely. The filled-in Julia sets Kc and Kd are

quasi-conformally homeomorphic.

3. A mapping h : EM → EM is defined by h(c) := d, where d is given by item 2. It

is independent of the precise choice of gc .

4. h is a non-trivial homeomorphism of EM onto itself, fixing a and b. It is analytic

in the interior of EM and compatible with tuning, i.e. h(c0 ∗ x) = h(c0) ∗ x for all

centers c0 ∈ EM . A hyperbolic component of period p is mapped to a hyperbolic

component of period q with k̃v

kv
p ≤ q ≤ k̃w

kw
p.

5. On EM , h and h−1 are Hölder continuous at Misiurewicz points in EM and Lip-

schitz continuous at a and b. Moreover, h is macroscopically expanding at a and

contracting at b: we have hn(c) → b for n→∞, locally uniformly for c ∈ EM \ {a},
and h−n(c) → a locally uniformly for c ∈ EM \ {b}.
6. For every θ ∈ Q∩([Θ−

1 , Θ−
3 ]∪[Θ+

1 , Θ+
3 ]), there is an angle θ̃ such that ψc(γc(θ)) =

γd(θ̃) for d = h(c), and h(γM(θ)) = γM(θ̃). See Theorem 9.1 for a discussion of the

mapping H : θ 7→ θ̃. Suppose that the orbit of θ under doubling never returns to

(Θ−
1 , Θ−

3 )∪ (Θ+
1 , Θ+

3 ), or equivalently, that the orbit of γc(θ) under fc never returns

to Ec \ {γc(Θ
−
1 ), γc(Θ

−
3 )}. Then we have Rc(θ̃) = ηc(Rc(θ)) for all c ∈ EM , thus θ̃

and h(γM(θ)) are determined combinatorially.
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7. We construct mappings G : U \D → U ′ \D and H : U ′ \D → DR2 \D, such that

H ◦G ◦H−1 = F and such that in item 1 we may set gc := Φ−1
c ◦G ◦Φc in U ′

c \Kc .

And in item 2 we obtain ψc = Φ−1
d ◦H ◦ Φc in the exterior of Kc . These mappings

shall satisfy Condition 5.5. Regions PM , P̃M are obtained explicitly as closures of

suitable neighborhoods of EM \ {a, b}. An extension h : PM \ EM → P̃M \ EM is

obtained by setting h := Φ−1
M ◦H ◦ ΦM .

8. Now h : PM → P̃M is a homeomorphism. h is analytic in the interior of EM and

quasi-conformal in the exterior. The dilatation bound K depends on some choices,

but it cannot be less than max(kv/k̃v, k̃w/kw).

The proof of Theorem 5.4 will be completed in the following sections:

1., 2.: gc : Uc → U ′
c was constructed in the previous section, and the conjugation to

fd is obtained from the Straightening Theorem 4.3 for quasi-regular quadratic-like

mappings.

3.: For c ∈ EM we construct gc according to item 1 and obtain a unique d ∈ M
according to item 2, thus h : EM →M. By Proposition 4.2, the value of d is the same

for all quadratic-like mappings gc with gc = g(1)
c on Kc . Thus it does not depend

on several choices made for G and thus for gc : these are the sector parameters s

and u, parts of the boundaries ∂Uc and ∂U ′
c , and the quasi-regular interpolation in

the sectors Tc(Θ
±
i ). h is determined uniquely by the choice of g(1)

c , which is in its

essence purely combinatorial. The extension of h to the exterior of EM will depend

on several choices, cf. Section 5.4. The mapping H of external arguments is again

independent of all choices, cf. Section 9.1.

The orbit of Θ ∈ {Θ±
1 , Θ±

3 } never returns to (Θ−
1 , Θ−

3 )∪ (Θ+
1 , Θ+

3 ), and we may say

that Rc(Θ) is mapped to itself by ηc . By item 6, ψc(Rc(Θ
−
1 ) ∩ U ′

c) is a quasi-arc

landing at ψc(γc(Θ)) through the same access as Rd(Θ). (Under Condition 5.5, we

have immediately that the end of the quasi-arc coincides with an end of Rd(Θ).)

Now the critical value c of gc belongs to the strip bounded by the four rays, thus

d = ψc(c) belongs to the strip defined by the same four angles in the dynamic plane

of fd , and the parameter satisfies d ∈ EM .

4.: The mapping h̃ : EM → EM is constructed analogously from g̃(1)
c . We will see

in Section 5.5 that h ◦ h̃ = h̃ ◦ h = id, thus h is bijective. The proof relies on

ψc(γc(Θ
±
2 )) = γd(Θ̃±

2 ), which follows from item 6. Continuity and analyticity are

shown in Section 5.6, and compatibility with tuning in Section 5.6.5. Hyperbolic

components are discussed in Section 5.6.1, and the sharp estimate on the periods

follows from item 1.

5.: See Section 5.6.4. The result is related to Tan Lei’s scaling behavior of M at

Misiurewicz points, cf. Proposition 3.10 and the discussion in Sections 8.1 and 8.5.

6.: Consider c ∈ EM and a conjugation ψc from gc to fd according to item 2. Now

βc is a fixed point of gc and gc(−βc) = βc , since −βc ∈ Ec happens only in the

case of a = −2 or b = −2. Recall that αc is a pinching point of Kc and βc is

not, thus ψc(±βc) = ±βd . By Lindelöf’s Theorem 2.1, ψc maps Rc(θ) ∩ U ′
c to
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a quasi-arc landing at ψc(γc(θ)) through the same access as a unique ray Rd(θ̃).

The k-th binary digit of θ̃ is 0 or 1, according to which connected component of

C\(Kd∪Rd(0)∪Rd(1/2)) contains the k-th iterate of Rd(θ̃) under fd . Equivalently

we may consider the orbit ofRc(θ) under gc . We will discuss in Section 9.1 that θ̃ can

be obtained by iterating θ with G, which is the piecewise linear boundary value of G

on S1. In particular θ̃ is independent of c ∈ EM , and the landing properties show that

for c = γM(θ), we have d = γM(θ̃). Now suppose that the orbit of θ under doubling

never returns to (Θ−
1 , Θ−

3 )∪ (Θ+
1 , Θ+

3 ), then we have gk
c (Rc(θ)) = fk

c (ηc(Rc(θ))) for

k ∈ N, thus Rc(θ̃) = ηc(Rc(θ)) since the digits are the same. This result yields the

images of several parameters in EM immediately, see Theorem 7.6 and Section 8.5

for applications. Moreover it shows some qualitative correspondence between the

mappings ηc , ψc and h, and it illustrates why h is qualitatively expanding at a and

contracting at b.

7.: See Section 5.4. H is K-quasi-conformal for a K ≤ K ′K ′′, where the dilatation of

gn
c is bounded by K ′, and the dilatation of H in the fundamental annulus is bounded

by K ′′. Although the construction of H is most important for the extension of h,

it simplifies the proof of continuity on EM , and it will have another application in

Section 9.1.

8.: Since H is K-quasi-conformal, h : PM \EM → P̃M \EM is K-quasi-conformal, too.

According to Section 5.4, the definition of h in terms of H is equivalent to defining

and straightening gc for c ∈ PM \ EM , and the proof of continuity at the boundary

is given in Section 5.6.3 simultaneously for approaching a boundary point from EM

or from the exterior. By Mori’s Theorem (Section 2.2), the boundary values H and

H−1 of H and H−1 on ∂D are 1/K-Hölder continuous. We will see in Section 9.2,

that the optimal Hölder exponents are k̃v/kv for H and kw/k̃w for H−1 (and there

is no larger exponent on the subintervals relevant here).

5.4 The Exterior of Kc , M and D

In Section 5.2 we have constructed a quadratic-like mapping gc : Uc → U ′
c for c ∈ EM ,

and in the previous section we have obtained a straightening ψc ◦ gc ◦ ψ−1
c = fd and

defined h(c) := d. According to the Corollary 4.5 to the proof of the Straightening

Theorem 4.3, one may choose a radius R > 1 and a quasi-conformal mapping ξc :

U ′
c \ Uc → DR2 \ DR with F ◦ ξc = ξc ◦ gc on ∂Uc , and obtain a hybrid-equivalence

ψc from gc to fd , such that ∂Uc and ∂U ′
c are mapped to the equipotential lines

|Φd(z)| = R and |Φd(z)| = R2, and such that ψc = Φ−1
d ◦ ξc in U ′

c \ Uc . Moreover

ξc can be extended by recursive pullbacks to a conjugation from gc to F in U ′
c \ Kc ,

with ξc = Φd ◦ψc everywhere. We have chosen the domains and mappings such that

G = Φc ◦ gc ◦ Φ−1
c : U → U ′ is independent of c ∈ EM , and soon we will choose ξc

in a similar way. Although h : EM → EM is independent of all of these choices, this

approach is crucial for the extension of h to the exterior of EM . Our research on the

extension was motivated by the announcements of Branner and Fagella in [F1] and
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[private communications], and we shall comment on technical differences to their

recent paper [BF2] in items 1 and 2 of Remark 5.6, see also item 3 of Remark 9.3.

Now fix a radius R > 1 and choose a quasi-conformal mapping H : U ′\U → DR2\DR

with F ◦H = H ◦ G on ∂U , and extend it by recursive pullbacks to a conjugation

H : U ′ \ D → DR2 \ D. This construction shows that H is bijective, since it is

bijective between certain annuli that are defined recursively. For every c ∈ EM we

choose ξc = H ◦ Φc in the fundamental annulus U ′
c \ Uc and construct the hybrid-

equivalence ψc from this mapping. Then all loops in the diagram from Figure 5.4 are

commuting, and in particular we obtain the representation ψc = Φ−1
d ◦H ◦Φc in the

exterior of Kc . If the dilatation of H in the fundamental annulus U ′ \U is bounded

by K ′ and the dilatation of all iterates of G is bounded by K ′′, then H is K-quasi-

conformal in U ′ \D for some K ≤ K ′K ′′. In particular the hybrid-equivalence ψc is

K-quasi-conformal in U ′
c for all c ∈ EM .

U \ D

U ′ \ D

G

?

Uc \ Kc

U ′
c \ Kc

gc

?

Bd \ Kd

B′
d \ Kd

fd

?

DR \ D

DR2 \ D

F (z) = z2

?

Φc
�

Φc

�

ψc
-

ψc

-

Φd
-

Φd

-

ξc

QQs

ξc

��3

H

AAU

H

���

Figure 5.4: The straightening of gc and some related mappings in the exterior of the
unit disk. We have Bd = ψc(Uc) = Int(|Φd| = R) and B′

d = ψc(U ′c) = Int(|Φd| = R2). If
the Julia sets are not connected, the diagram is well-defined and commuting on smaller
domains.

Define the compact quasi-disks PM and P̃M in the parameter plane such that PM is

bounded by the ends of the parameter rays RM(Θ±
1 ) and RM(Θ±

3 ) and by part of the

curve φ−1
M (∂U ′), and such that H(ΦM(∂PM \ {a, b})) = ΦM(∂P̃M \ {a, b}), i.e. P̃M is

bounded by four quasi-arcs landing at a and b and by parts of the equipotential line

GM(c) = logR2. Note that PM corresponds to Pc ∩ U ′
c and that we have adapted

the description to case A; in case B the regions are bounded by two rays instead

of four. Consider now a parameter c in the interior of PM \ EM , which does not

belong to a parameter sector at the lower vertex in the case that the middle or

upper dynamic vertex is iterated to the lower one. Choose a compact, connected,

full set N such that: D ⊂ N ⊂ U , N = −N , ΦM(c) /∈ N , ±
√

ΦM(c) ∈ N , and
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F−1(N) ⊂ N . Moreover, N shall be disjoint from the straight sectors T (Θ±
i ) and

their images under F (this condition does not contradict the previous ones, since

ΦM(c) does not belong to an image of T ), and the orbit of ΦM(c) under G shall be

disjoint from N . The latter condition can be satisfied because G is expanding. By

Proposition 3.2 there is a corresponding set Nc ⊃ Kc such that Φc : C \Nc → C \N
is well-defined and conformal. In fact the composition of Boettcher conjugations

defines a holomorphic motion of Uĉ , U ′
ĉ

and Tĉ for parameters ĉ in a neighborhood

of c. Now Uc and U ′
c can be defined and gc : Uc → U ′

c shall be given by g(1)
c on Nc

and by Φ−1
c ◦G ◦Φc in the components of Uc \Nc , it is continuous and independent

of the precise choice of N . Although Lindelöf’s Theorem 2.1 is not available in the

disconnected case, a pullback argument shows that the six sectors are still landing

at the appropriate vertices. Now gc is a quasi-regular quadratic-like mapping with

disconnected Julia set Kc , in particular we have 0 ∈ Uc and c ∈ U ′
c . Theorem 4.3

yields a hybrid-equivalence ψc and a parameter d ∈ C\M with gc = ψ−1
c ◦ fd ◦ψc in

Uc . Here d and ψc are determined uniquely by the choice of ξc = H ◦Φc on U ′
c \Uc .

Connect c with ∂U ′
c by a curve avoiding Nc , such that its iterates under gc avoid Nc

as well, then by a pullback argument we have ψc = Φ−1
d ◦ H ◦ Φc on these curves.

We arrive at

ΦM(d) = Φd(d) = Φd(ψc(c)) = H(Φc(c)) = H(ΦM(c))

as in Corollary 4.5. The definition of h is extended by setting h(c) := d again.

7

4 4

7

PM
P̃M

-
h

Figure 5.5: For the surgery from Theorem 1.2, the extended h : PM → P̃M maps
some para-puzzle-pieces with “bumps” (left) onto standard para-puzzle-pieces (right). The
image assumes that Condition 5.5 is satisfied and that H fixes the ray R(9/56) and its
images in addition. The parameter frame F7

M(25, 34) (bottom) is mapped to F4
M(3, 4)

(middle), which in turn is mapped to F7
M(26, 33) (top).

The extended mapping depends on the choices of G and H, and it satisfies h =

Φ−1
M ◦H ◦ ΦM in the exterior of EM . This formula is used for the definition of h on

∂PM , and in the lower sectors in the case that a middle or upper sector is iterated to

a lower one. It shows that h : PM \EM → P̃M \EM is bijective and K-quasi-conformal.
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The surgical construction of the above is needed besides the representation of h by

H, because it will be employed in Section 5.6.3 to prove continuity of h at the

boundary ∂EM . The same techniques are used there when a boundary point is

approached from within EM or from the exterior, and we will need the holomorphic

motion of Uc , U ′
c and Tc for parameters c in a neighborhood of c0 ∈ ∂EM .

Sometimes we shall construct homeomorphisms between subsets ofM piecewise, and

the following condition ensures that the extended mappings can be pieced together

in the exterior as well, see item 1 of Remark 8.2 and item 4 of Proposition 9.10 for

applications. The condition is easy to satisfy by a pullback argument, also in the

case where some vertex is iterated to another one. In fact we can extend h to a

homeomorphism of C, which is the identity on M \ EM . Or we may extend it by

applying the construction of gc to suitable parameters c ∈M \ EM .

Condition 5.5 (H Is the Identity on Certain Rays)

G shall be constructed according to Section 5.2, with the additional property that

G(z) = F (z) for arg(z) ∈ {Θ±
1 , Θ±

3 } in case A, and on the two ray ends in case B.

Now we assume u = logR, and H shall be the identity on these rays and all of their

images under F or G.

Remark 5.6 (Use of Mappings in the Exterior of D)

1. The quasi-conformal mapping H is constructed easily in the exterior of D. For

c ∈ EM and d = h(c) we have ψc = Φ−1
d ◦ H ◦ Φc in the exterior of Kc , and

h = Φ−1
M ◦H◦ΦM in the exterior of EM . This shows that h is bijective and globally K-

quasi-conformal in the exterior. H will have another application in Section 9.1, since

its boundary value H on S1 is considered as a mapping of angles, cf. items 2 and 3

of Remark 9.3. If gc = fN
c in a neighborhood of z = 0, the extension will satisfy h =

Φ−1
M ◦H ◦FN−1 ◦ΦM . Branner–Fagella [BF2] show quasi-conformality in the exterior

without extending H dynamically, by employing the equivalent representation h =

Φ−1
M ◦Φd0 ◦ψc0 ◦Φ−1

c0
◦FN−1 ◦ΦM of h by the conjugation ψc0 and an argument with

holomorphic motions.

2. The choices for H, in particular Condition 5.5, have been possible since the proof

by Douady–Hubbard was adopted for Theorem 4.3. The technique of Shishikura

(item 3 of Remark 4.4), which was adopted by Branner–Fagella [BF2], allows to

take PM as an infinite strip between the four external rays, and P̃M would be an

infinite strip bounded by quasi-arcs. This extension would at first not be given by

surgery outside of Φ−1
M (∂U ′), but one has a natural extension of G and H to C \D.

The hybrid-equivalence ψc can be defined in all of C, and the proof of continuity

does not require the use of a holomorphic motion.

3. Choose any quasi-conformal mapping H ′ in the exterior of D with boundary value

H on S1, then setting G′ := H ′−1◦F ◦H ′ and g′c := Φ−1
c ◦G′◦Φc for c ∈ EM yields the

most general quadratic-like mapping with g′c = g(1)
c on Kc (by [Mu1, Proposition 5.2]

or by the proof of Proposition 4.2, with α := H ′−1◦H). And by the same techniques,

h′ := Φ−1
M ◦ H ′ ◦ ΦM yields the most general quasi-conformal extension of h to the

exterior of EM . Note however that the techniques of the previous sections do not
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become obsolete even if there is a simple proof that the combinatorially defined

mapping H is quasi-symmetric, so that quasi-conformal extensions H ′ are known

to exist: the surgery is required to prove continuity of h at the boundary, and the

mapping g′c cannot be defined for c /∈ EM , since it would not be given by iterates of

fc in the set Nc \ Kc of the above. Cf. also item 5 of Remark 9.6.

4. Write Ac := U
′
c \Uc for the fundamental annulus. To extend the homeomorphism

h to the exterior of EM , ξc : Ac → DR2 \ DR must be prescribed in such a way

that it depends continuously on the parameter c. The extension will be locally

quasi-conformal if the tubing ξ−1
c (z) depends analytically on c [DH3]. This means

that ξ−1
c ◦ ξc0 : Ac0 → Ac is a holomorphic motion. We have discussed disjoint

renormalization in Section 4.3. In that case the motion of ∂Ac0 is constructed by

using the Boettcher conjugation, and the λ-Lemma 2.6 yields an extension to Ac0 .

In our case, the holomorphic motion is given implicitly by Φ−1
c ◦ Φc0 on Ac0 , and

the λ-Lemma is not needed to define ξc . Bijectivity and global quasi-conformality

are obtained immediately from properties of H.

5. In [EY, Ha1] an extension of homeomorphisms to the exterior of connectedness

loci is accomplished by a theorem of Buff [Bu1, Bu2]: if a homeomorphism between

suitable compact sets has a continuous extension to a neighborhood, mapping the

exterior into the exterior, then there is an extension that is a homeomorphism.

6. Lyubich [L4] has shown that disjoint renormalization is quasi-conformal in a

neighborhood of the little Mandelbrot set. The proof employs an analytic structure

on the infinite-dimensional manifold of analytic quadratic-like germs. Local quasi-

conformal extensions are glued together by Lemma 2.5. According to [BF2], Branner

and Lyubich claim that the result extends to the Branner–Fagella homeomorphisms.

Presumably the proof will work for every surgery satisfying Condition 1.1, and the

homeomorphism h of Theorem 5.4 will be quasi-conformal in PM . Here we have

only shown that h is conformal in the interior and quasi-conformal in the exterior

of EM . J. Kahn [Ka] has conjectured that ∂M is holomorphically removable, which

would mean that any mapping h with these properties is quasi-conformal.

5.5 Bijectivity

For d ∈ EM , the mapping g̃(1)

d = fd ◦ η−1
d was defined piecewise in Definition 5.1.

A quasi-regular quadratic-like mapping g̃d : Ũd → Ũ ′
d with g̃d = g̃(1)

d on Kd is

constructed analogously to Section 5.2. The Straightening Theorem 4.3 yields a

hybrid-equivalence ψ̃d◦ g̃d◦ ψ̃−1
d = fe , and h̃(d) := e defines a mapping h̃ : EM → EM .

In this section we consider only parameters in EM , and we need not discuss particular

uniform choices for the mappings. Suppose that d = h(c), thus fd = ψc◦gc◦ψ−1
c , then

we want to show that fc and g̃d are hybrid-equivalent, thus c = h̃(d), and h̃◦h = id.

Together with the analogous result h ◦ h̃ = id this shows that h : EM → EM is

bijective.

We want to show that g̃d = ψc ◦ fc ◦ ψ−1
c on Kd . The orbit of γc(Θ

−
2 ) under gc is
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qualitatively the same as that of γc(Θ̃
−
2 ) under fc , and we have ψc(γc(Θ

−
2 )) = γd(Θ̃−

2 )

by item 6 of Theorem 5.4. Thus ψc(Vc∩Kc) = Ṽd∩Kd and ψc(Wc∩Kc) = W̃d∩Kd .

If z ∈ Kc satisfies z /∈ Ec and −z /∈ Ec , then we have

gc(z) = gc(−z) and thus ψc(−z) = −ψc(z) , (5.2)

since fd is even and ψc is injective. On Kd \ Ed = Kd \ (Ṽd ∪ W̃d) we have

g̃d = g̃(1)

d = fd = ψc ◦ gc ◦ ψ−1
c = ψc ◦ fc ◦ ψ−1

c . (5.3)

On Ṽd ∩ Kd we have

g̃d = g̃(1)

d = f
−(lv−1)
d ◦ (−f l̃v

d ) = ψc ◦ g−(lv−1)
c ◦ (−g l̃v

c ) ◦ ψ−1
c , (5.4)

since f l̃v
d (Ṽd ∩Kd) = −f lv

d (Vd ∩Kd), f l̃v
d (Ṽd ∩Kd)∩Ed = ∅ and f lv

d (Vd ∩Kd)∩Ed = ∅,
thus ψ−1

c (−z) = −ψ−1
c (z) on f l̃v

d (Ṽd ∩ Kd) by (5.2). In (5.4), points in Vc ∩ Kc are

iterated forward and backward with gc and no iterate belongs to Ec , thus

g−(lv−1)
c ◦ (−g l̃v

c ) = f−(lv−1)
c ◦ (−f l̃v−1

c ◦ fc ◦ ηc) (5.5)

= fc ◦ f−lv
c ◦ (−f l̃v

c ◦ ηc) = fc . (5.6)

Thus (5.3) is satisfied on Ṽd∩Kd as well, and finally on Kd by the analogous compu-

tation for W̃d ∩Kd . Now the restriction of ψc ◦ fc ◦ ψ−1
c to a suitable neighborhood

of Kd is a quadratic-like mapping, which coincides with g̃(1)

d and thus with any g̃d on

the connected filled-in Julia set Kd , and item 1 of Proposition 4.2 shows that g̃d is

hybrid-equivalent to ψc ◦ fc ◦ψ−1
c and to fd , thus h̃(d) = c and h is injective on EM .

The same arguments show that h̃ is injective and h̃ = h−1.

Remark 5.7 (Alternative Proofs of Bijectivity)

1. When we consider extensions of the homeomorphisms to the exterior of EM , it is

not possible to treat h and h̃ on an equal footing: if both mappings are extended by

applying the techniques of the previous section individually, the extended mappings

will no longer be mutually inverse. Our approach is to construct the extension

only for h, define h̃ only on EM to prove that h is bijective there, and bijectivity of

h : PM\EM → P̃M\EM was obtained already from the representation h = Φ−1
M ◦H◦ΦM .

2. An alternative approach would be the following one: H is constructed first,

and we choose domains D ⊂ Û ⊂ Û ′ ⊂ U ′ such that F : Û → Û ′ is 2:1. Then

we define Ũ and Ũ ′ such that H(∂Û) = ∂Ũ and H(∂Û ′) = ∂Ũ ′. The mappings

are defined by H̃ := (H|Û ′)
−1 and G̃ := H̃−1 ◦ F ◦ H̃, Φ−1

d ◦ G̃ ◦ Φd is matching

continuously with g̃(1)

d on ∂Kd . Then the extended h̃ will be a proper restriction

of h−1 and its domain is known less explicitly than that of h, so the construction

is not symmetric either. But this approach has the advantage that bijectivity of h

and h̃ on EM is obtained without employing item 1 of Proposition 4.2, since we have

ψ̃d = ψ−1
c in a neighborhood of Kd . (In any case we have ψ̃d = ψ−1

c on Kd , since

the hybrid-equivalences are determined uniquely there.)
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3. Proposition 4.2 is interesting nevertheless, since it was needed to prove that

h : EM → EM is determined by the choice of g(1)
c alone, and since it was used in item 3

of Remark 5.6. Moreover the above proof of bijectivity employing Proposition 4.2

is possible in other cases as well, where we know the mappings on their filled-in

Julia sets but there is no representation in the exterior of D. We have mentioned in

Section 4.5 that this technique can be applied to prove that the Branner–Douady

homeomorphism ΦA : M1/2 → T ⊂ M1/3 is injective. In [BD, BF1] the existence

of a hybrid-equivalence from the respective g̃d to fc is claimed, but the proof of

“independence of the choices” is not given in detail. An alternative to item 1 of

Proposition 4.2 is provided by the following construction: first we make sure that

ψc is mapping the sectors in Tc to certain sectors, by choosing ξc appropriately or

by an additional conjugation as in [BF1, Theorem G]. A hybrid-equivalence shall

not be defined by a pullback of annuli but by a pullback of sectors, and it will be

the identity outside of the countable family of disjoint sectors. Quasi-conformality

is established by considering an approximating sequence of mappings, which differ

from the identity only in a finite collection of sectors, and which form a normal

family.

5.6 Continuity and Analyticity

We shall prove continuity of the will-be homeomorphism h : EM → EM by treat-

ing hyperbolic components, non-hyperbolic components and the boundary of EM

separately. h is independent of some choices made for gc and ξc . The proof in

Sections 5.6.2 and 5.6.3 will be made under the assumption that gc is of the form

Φ−1
c ◦ G ◦ Φc in Uc \ Kc . In the latter section we will require in addition that the

hybrid-equivalences ψc have a uniformly bounded dilatation, which can be ensured

by taking the conjugation ξc of the form H ◦ Φc . When continuity is shown, h will

be a homeomorphism on EM , since the continuity of h−1 follows from the Closed

Graph Theorem (or by performing the same steps for h̃ = h−1). The proof of con-

tinuity at the boundary shows at the same time that the extended h : PM → P̃M

is continuous at ∂M, and h : PM \ EM → P̃M \ EM is quasi-conformal. Again, the

Closed Graph Theorem shows that h−1 : P̃M → PM is continuous, and h : PM → P̃M

is a homeomorphism.

5.6.1 Analyticity in Hyperbolic Components

If c0 is a center of period p in EM , then d0 := h(c0) is a center of period q with
k̃v

kv
p ≤ q ≤ k̃w

kw
p, and gq

c0
= fp

c0
in a neighborhood of z = 0 according to Section 5.2.

Denote the corresponding hyperbolic components and the multiplier maps according

to Section 3.3 by ρp : Ωp → D and ρ̂q : Ω̂q → D. If c ∈ Ωp and zc is the p-

periodic point in the Fatou component of Kc containing c, the orbit of zc under gc is

combinatorially the same as that of zc0 = 0 under gc0 . Thus for d = h(c) the orbit
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of ẑd := ψc(zc) under fd is combinatorially the same as that of ẑd0 = 0 under fd0 ,

and d ∈ Ω̂q. (Hyperbolic components are characterized uniquely by combinatorial

data in the dynamic plane, e.g. the Hubbard tree or the external angles of the

characteristic periodic point.) We have

ρp(c) = (fp
c )′(zc) = (gq

c)′(zc) = (f q
d )′(ẑd) = ρ̂q(d) ,

since ψc is holomorphic in a neighborhood of zc = gq
c(zc). Now the representation

h = ρ̂−1
q ◦ ρp : Ωp → Ω̂q shows that h is analytic in Ωp .

5.6.2 Analyticity in Non-Hyperbolic Components

The idea of the following proof is taken from [BF1]. Suppose that Ω ⊂ EM is

a non-hyperbolic component of the interior of M. Recall the propositions and

notations from Section 3.7: fix a c0 ∈ Ω. There is a completely fc0-invariant subset

A ⊂ Jc0 = Kc0 of positive measure and an invariant line field µ1(z) supported on

A. The conjugation ζt is quasi-conformal with Beltrami coefficient µt = tµ1 , and

γ : D → Ω is conformal with fγ(t) = ζt ◦ fc0 ◦ ζ−1
t . Moreover, ζt is the unique

continuous extension of Φ−1
γ(t) ◦ Φc0 : C \ Kc0 → C \ Kγ(t) .

Note that A and µ1 are invariant under fn
c0

, branches of f−n
c0

, and z 7→ −z (since

fc0 is even). Thus A and µ1|A are invariant under gc0 . Set d0 := h(c0), then

fd0 = ψc0 ◦ gc0 ◦ ψ−1
c0

. Define Â := ψc0(A), then Â is completely invariant under fd0

and it has positive measure, since ψc0 is quasi-conformal [A1, p. 33]. Now µ1 on Kc0

is transported by T∗ψc0 to an fd0-invariant line field µ̂1 supported on Â. Outside

of Kd0 , µ̂1 := 0 is not transported by T∗ψc0 . By Proposition 3.16, d0 belongs to

some non-hyperbolic component Ω̂ of M. The line field defines a parametrization

γ̂ : D → Ω̂, such that fγ̂(t) = ζ̂t ◦ fd0 ◦ ζ̂−1
t and µ̂t := tµ̂1 is the Beltrami coefficient

of ζ̂t .

? ? ? ? ?

B′
d̂

B
d̂

B′
d0

Bd0

U ′
c0

Uc0

U ′
c

Uc

B′
d

Bd

f
d̂ fd0

gc0 gc fd

�

�

ζ̂t

ζ̂t

�

�

ψc0

ψc0

-

-

ζt

ζt

-

-

ψc

ψc

Figure 5.6: This commuting diagram proves that the homeomorphism h is analytic in a
non-hyperbolic component Ω. We have d0 = h(c0), d = h(c), c = γ(t) and d̂ = γ̂(t).
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Fix t ∈ D, set c := γ(t) ∈ Ω, d := h(c) ∈ EM , and d̂ := γ̂(t) ∈ Ω̂. Consider

the diagram in Figure 5.6: outside of the Julia sets we have gc = Φ−1
c ◦ G ◦ Φc ,

gc0 = Φ−1
c0
◦ G ◦ Φc0 and ζt = Φ−1

c ◦ Φc0 , thus gc = ζt ◦ gc0 ◦ ζ−1
t in Uc \ Kc . Now ζt

is the unique continuous extension of its restriction to the exterior of Kc0 , thus the

diagram commutes.

Define a quasi-conformal homeomorphism φ := ψc ◦ ζt ◦ ψ−1
c0
◦ ζ̂−1

t , then we have

f
d̂

= φ−1 ◦ fd ◦ φ. Let us consider ellipse fields restricted to the Julia sets: since ψc0

is a hybrid equivalence, it maps tµ1 to tµ̂1 , which is mapped to infinitesimal circles

by ζ̂t . On the other hand, tµ1 is mapped to circles by ζt , which are again mapped

to circles by ψc . Thus the Beltrami coefficient of φ vanishes almost everywhere on

K
d̂

, φ is a hybrid equivalence, and d = d̂. Now we have obtained h(γ(t)) = γ̂(t) for

all t ∈ D, thus h = γ̂ ◦ γ−1 : Ω → Ω̂ is conformal.

5.6.3 Continuity at the Boundary

Suppose that c0 ∈ ∂EM = EM ∩ ∂M and cn ∈ PM with cn → c0 . Set d0 := h(c0) and

dn := h(cn). Now h and h−1 are bijective by Section 5.5 and map the interior of EM

onto the interior by Sections 5.6.1 and 5.6.2, thus d0 ∈ ∂EM . To show dn → d0 , it

is sufficient to show that every cluster point d∗ of dn coincides with d0 , since P̃M

is compact. We shall assume dn → d∗ , and aim to construct a quasi-conformal

equivalence between fd∗ and fd0 . Then quasi-conformal rigidity at the boundary

∂M will yield d∗ = d0 .

We assume that gcn : Ucn → U ′
cn

is constructed according to Section 5.2, and that the

dilatation of all ψcn : U ′
cn
→ B′

dn
= Int(|Φdn(z)| = R2) is bounded by K. There is a

neighborhood D of c0 , such that Φ−1
c is well-defined on U ′ \ U and in the sectors T

for all c ∈ D (cf. the proof in Section 5.4). If a vertex of Tc is iterated to another one,

we must assume now that c0 is not the lower vertex of EM , in that case continuity

follows from the arguments in Section 5.6.4. The λ-Lemma 2.6 yields a holomorphic

motion χc : U ′
c0
→ U ′

c with χc = Φ−1
c ◦ Φc0 in U ′

c0
\ Uc0 , in Tc0 and in fc0(Tc0). For

large n, χcn is defined and the dilatation is bounded by K0 . We have χcn → id and

χ−1
cn
→ id uniformly on compact subsets of U ′

c0
. Now

fdn = (ψcn ◦ χcn) ◦ (χ−1
cn
◦ gcn ◦ χcn) ◦ (ψcn ◦ χcn)−1 : Bdn → B′

dn
. (5.7)

In Tc0 we have χ−1
cn
◦ gcn ◦ χcn = gc0 , and in every component of Uc0 \ Tc0 we have

χ−1
cn
◦ gcn ◦ χcn = χ−1

cn
◦ f−k

cn
◦ (±f l

cn
) ◦ χcn → f−k

c0
◦ (±f l

c0
) = gc0 ,

thus χ−1
cn
◦ gcn ◦ χcn → gc0 on Uc0 .

ψcn ◦ χcn : U ′
c0
→ B′

dn
is KK0-quasi-conformal. By Theorem 2.2 there is a mapping

Ψ : U ′
c0
→ C and a subsequence ψc̃n

◦ χc̃n
→ Ψ. Now Ψ maps the three vertices of

Tc0 to distinct points of Kd∗ , thus it is not constant but a quasi-conformal mapping

of U ′
c0

onto a component of the kernel of (B′
d̃n

). Φ±1
d (z) is holomorphic in d and z,

∂B′
d̃n

= (Φ−1

d̃n
◦Φd∗)(∂B

′
d∗), and d̃n → d∗ . Thus Ψ : U ′

c0
→ B′

d∗ and (ψc̃n
◦ χc̃n

)−1 →

93



Ψ−1 uniformly on compact subsets of B′
d∗ . We have Ψ−1(Bd∗) = Uc0 and f

d̃n
→ fd∗ .

Now (5.7) yields fd∗ = Ψ ◦ gc0 ◦Ψ−1 on Bd∗ .

Ψ will not be a hybrid-equivalence in general, but Ψ ◦ ψ−1
c0

is a quasi-conformal

equivalence between fd0 and fd∗ . In particular Kd∗ is connected, thus d∗ ∈ M.

Since d0 ∈ ∂M, item 3 of Proposition 4.2 yields d∗ = d0 , thus dn → d0 .

5.6.4 Misiurewicz Points

Suppose that c∗ ∈ EM is a Misiurewicz point with period p and ray period rp,

the preperiod will not matter. Denote the multiplier of the p-cycle by ρc∗ and

fix a local branch A of M at c∗ . Choose a suitable sequence of pinching points

(cj) ⊂ A according to Proposition 3.10, and the set Sj shall consist of the connected

component of M \ {cj+1, cj} between these two points, with cj+1 included and cj
excluded. We have R1|ρc∗|−rj ≤ |c− c∗| ≤ R2|ρc∗|−rj for c ∈ Sj . There are external

angles θj of cj converging monotonously to an external angle θ∗ of c∗ , and the

construction for item 3 of Proposition 3.10 (cf. Section 8.5) shows |θj − θ∗| � 2−rpj.

Now d∗ := h(c∗) is a Misiurewicz point, since the orbit of c∗ under gc∗ is strictly

preperiodic. The period shall be q, and the ray period will be rq with the same r as

for c∗ . Denote the multiplier by ρd∗ , and consider the sequence of pinching points

dj := h(cj) with external angles θ̃j (on the corresponding side of h(A)), converging

to an external angle θ̃∗ of d∗ . By considering the critical orbits one can show that

the sequence dj has the properties of Proposition 3.10, item 3. Alternatively we can

work with the Hölder continuous mapping of external angles, by Proposition 9.4 we

have |θ̃j − θ̃∗| � |θj − θ∗|q/p � 2−rqj. Both approaches yield an upper and lower

Hölder estimate |h(c)−d∗| � |c−c∗|α with α = log |ρd∗|/ log |ρc∗|, in a neighborhood

of c∗ (on every local branch). For c∗ ∈ {a, b} we have α = 1, thus h is Lipschitz

continuous at a and b. This proof works without modifications to prove continuity of

h : EM → EM at a or b in the case that some vertex of Ec is iterated to another one,

this case was excluded in the previous section. The extended homeomorphism is

continuous as well, since the impressions of parameter rays landing at a Misiurewicz

point are trivial, or since the fibers are trivial.

The proof in Section 8.5 shows that the pinching points cj := hj(γM(Θ−
2 )), j ∈ Z,

which define common fundamental domains for the dynamics of h both at a and b,

yield a geometric scaling behavior. Thus hn(c) → b locally uniformly in EM \ {a},
and n → −∞ is treated analogously. This completes the proof of Theorem 5.4,

item 5.

5.6.5 Compatibility with Tuning

Suppose that c0 and d0 = h(c0) are centers of periods p and q in EM . There are

associated tuning maps and Mandelbrot copies Mc0 = c0 ∗M and Md0 = d0 ∗M
according to Section 4.3. For c = c0 ∗ x, Kc contains a “little Julia set” Kc, p around
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c, on which fp
c is hybrid-equivalent to fx . It is contained completely in Vc or Wc ,

thus fp
c = gq

c in a neighborhood of Kc, p . For d = h(c), f q
d around Kd, q := ψc(Kc, p)

is hybrid equivalent to gq
c , and thus to fp

c and to fx . The orbits of “little β-fixed

points” are combinatorially the same for d and d0 , thus d ∈ Md0 and d = d0 ∗ x.

Now h(c0 ∗ x) = h(c0) ∗ x for all x ∈M and all centers c0 ∈ EM .

Note that the tuning maps are analytic in the interior, which provides an alterna-

tive proof that h is analytic in the interior of EM , since the interior is contained in

tuned copies by the Yoccoz Theorem 4.8. Our construction of the homeomorphism

h employed only basic landing properties of rays and results about quasi-conformal

mappings. See Section 9.3 for an alternative construction of h relying on combina-

torial properties of H and on advanced results by Douady, Yoccoz and Schleicher,

and which requires MLC to complete the proof of continuity.
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6 Edges

Certain subsets of the limb M1/3 and of Kc for c ∈ M1/3 will be called edges.

They form the combinatorial basis for constructing a family of homeomorphisms:

for many parameter edges there is a homeomorphism mapping the edge onto itself,

and it is constructed by modifying fc to gc on a dynamic edge. The maximal edges

together with their vertices form a graph. In Chapter 7 we will introduce frames as

homeomorphic building blocks of edges. The combinatorial constructions of edges

and frames are similar, and these concepts are useful to describe the dynamics of fc

on Kc , cf. item 5 of Remark 7.5. Arbitrary limbs are considered in Section 7.4.

6.1 Dynamic and Parameter Edges

For c ∈ M1/3 , the fixed point αc and its preimage −αc are pinching points of Kc

with three incident components, and Kc \{αc, −αc} has five connected components.

z = 0 is contained in the component connecting αc and −αc . This component

united with {αc, −αc} forms the dynamic edge E1
c . The edge is compact, connected

and full. When a connected Ec ⊂ Kc is mapped 1:1 onto E1
c by an iterate fn−1

c , then

Ec is called a dynamic edge of order n, and the corresponding preimages of ±αc are

called vertices. They are denoted by z′ and z′′, such that z′ separates z′′ from αc (or

z′ = αc). This orientation is well-defined: otherwise αc would be a pinching point of

Ec and thus of E1
c . In fact we shall require that fn−1

c is injective in a neighborhood of

Ec\{z′, z′′}, thus the vertices are the only pinching points separating Ec from Kc\Ec .

Note that the orientation is not defined by the fact that one vertex is mapped to

αc and the other one to −αc under fn−1
c , cf. the remark after Theorem 6.4. The

vertices depend on c and we will sometimes write z′c, z
′′
c .

Usually each of the vertices has three external angles, and the four bounding angles

describing the corresponding edge are denoted by φ±, ψ± as it is sketched in Fig-

ure 6.1. In general f−1
c (Ec) consists of two disjoint edges of order n + 1 if c /∈ Ec ,

and this set of preimages does not form edges if c ∈ Ec . There is one exception: if

the parameter c is an α-type Misiurewicz point and the critical value c is a vertex

of Ec , then f−1
c (Ec) consists of two edges with a common vertex at z = 0. These

edges and their 1:1-preimages have at least one vertex with six external angles. The

simplest example of c = γM(9/56) is discussed in Section 8.4. If a vertex has six

external angles, the bounding angles of the edge shall be those closest to it. In any

case n-fold doubling (mod 1) maps each of the intervals [φ±, ψ±] homeomorphically
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onto [1/7, 2/7], thus there are w± ∈ N0 with 2n [φ±, ψ±] = [1/7, 2/7] + w± , or

φ± =
7w± + 1

7 · 2n ψ± =
7w± + 2

7 · 2n . (6.1)

Usually we have 0 < φ− < ψ− < φ+ < ψ+ < 1, but if the edge separates αc from

βc , then 0 < φ+ < ψ+ < φ− < ψ− < 1. Only some of the fractions are in lowest

terms. We collect these statements in Definition 6.1 and introduce the notation

En
c (w−, w+).

z′

z′′

c′

c′′

φ−

ψ−
φ+

ψ+

φ−

ψ−
φ+

ψ+

Figure 6.1: Left: the vertices z′, z′′ of a dynamic edge Ec are preimages of αc with
three (sometimes six) external angles. Four angles are denoted by φ±, ψ± in the sketched
order. The corresponding rays define a closed strip (gray) in the dynamic plane, whose
intersection with Kc yields Ec . Right: the bounding angles of a parameter edge EM are
defined analogously. Here the vertices c′, c′′ are α-type Misiurewicz points. Again, EM can
be defined as the intersection of M1/3 with some strip bounded by four external rays.

Definition 6.1 (Dynamic Edges)

For c ∈ M1/3 , ±αc are pinching points of Kc with three incident components. De-

note by E1
c the compact connected full subset of Kc between αc and −αc , i.e. the

appropriate component of Kc \ {αc, −αc} union these two points.

1. Suppose that n ∈ N and that a compact connected full subset Ec ⊂ Kc is mapped

1:1 onto E1
c by fn−1

c . Denote by z′, z′′ ∈ Ec the preimages of ±αc under fn−1
c . If

fn−1
c is injective in a neighborhood of Ec \ {z′, z′′}, then Ec is a dynamic edge of

order n. Now Ec \ {z′, z′′} is a connected component of Kc \ {z′, z′′}.
2. z′, z′′ shall be labeled such that z′ separates z′′ from αc (or z′ = αc), thus defining

an orientation of the edge. These points are called vertices of Ec .

3. Denote some external angles of the vertices by φ±, ψ± as it is sketched in Fig-

ure 6.1. They are called bounding angles of the edge. If z′ or z′′ has six external

angles, we take those closest to Ec . Now fn−1
c is injective in the strip bounded by

the four corresponding dynamic rays.

4. There are w± ∈ N0 such that the bounding angles are given by (6.1). We write

En
c (w−, w+) for Ec .
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The indices n, w−, w+ characterize the edge En
c (w−, w+) uniquely, and recursions

for these indices will be considered in Sections 6.3 and 7.2. But usually the indices

are not needed, and we shall speak of an edge Ec of order n. Now certain subsets

of M1/3 will be called parameter edges. They are defined by their correspondence

to dynamic edges, and sometimes we shall employ the labeling by n, w−, w+ to

indicate that some parameter edge EM = En
M(w−, w+) corresponds to dynamic edges

Ec = En
c (w−, w+) for c ∈ EM .

Definition 6.2 (Parameter Edges)

Consider n, w± ∈ N such that φ±, ψ± according to (6.1) belong to [1/7, 2/7]. Sup-

pose that the parameter rays for φ−, ψ+ land at some α-type Misiurewicz point c′ (or

at the root of M1/3), and ψ−, φ+ are external angles of c′′. Let EM be the connected

component of M1/3 \ {c′, c′′} between c′ and c′′, with these points included. Then

EM is called a parameter edge of order n, if En
c (w−, w+) is a dynamic edge for all

c ∈ EM . We write En
M(w−, w+) := EM . Now c′ and c′′ are the vertices of EM , and

φ±, ψ± are the bounding angles. EM is compact, connected and full. c′ is separating

c′′ from the root γM(1/7), and the angles follow the pattern of Figure 6.1.

Note that c′ ≺ c′′, but for a dynamic edge Ec ⊂ E1
c , z′′ does not have to be behind

z′ in the sense of Definition 3.12. We have 1/7 < φ− < ψ− < φ+ < ψ+ < 2/7,

and the corresponding parameter rays are landing in the same pattern as in the

dynamic plane. The existence of some parameter edge can be verified as follows: if

a subset SM of M1/3 corresponds to subsets Sc of Kc via the same external angles

at pinching points, and En
c (w−, w+) is a dynamic edge contained in Sc for all c ∈

SM , then En
c (w−, w+) corresponds to some parameter edge En

M(w−, w+) in SM by

Proposition 3.14. In particular this means that the orbit of z′ or z′′ never returns

to Sc , thus the external angles of the vertices do not bifurcate. (In some cases one

vertex is mapped to the other one, which would be a pinching point separating Sc

from Kc \ Sc .) If c = c′ or c = c′′, then the vertex z′ or z′′ in the dynamic plane

coincides with c. The dynamic edge En
c (w−, w+) need not exist for c /∈ SM , then we

may have γc(φ−) 6= γc(ψ+) or γc(ψ−) 6= γc(φ+). Examples of parameter edges will be

constructed in Sections 6.3, 7.2, 7.3 and in item 3 of Remark 8.2. By Theorem 4.9,

every parameter edge contains an arc connecting the vertices. The arc does not

meet a non-hyperbolic component, and Kc is locally connected for all c on the arc.

Proposition 6.3 (Basic Dynamics of Edges)

1. Consider c ∈ M1/3 and a dynamic edge Ec of order n. If n > 1, then 0 /∈
Ec \ {z′, z′′} and fc(Ec) is an edge of order n− 1. If c /∈ Ec \ {z′, z′′}, then f−1

c (Ec)

consists of two edges of order n+ 1, which are disjoint unless c ∈ {z′, z′′}.
2. Suppose that EM = En

M(w−, w+) is a parameter edge, and consider c ∈M1/3 . The

parameter satisfies c ∈ EM , iff Ec = En
c (w−, w+) is a dynamic edge and the critical

value satisfies c ∈ Ec .

3. Suppose that c ∈ M1/3 and Ec, Ẽc are dynamic edges. They are either disjoint,

disjoint except for a common vertex, or one edge is contained in the other one. The

same is true for parameter edges.
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4. EM = En
M(w−, w+) contains a primitive hyperbolic component Ωn of period n,

and no other component of a period ≤ n + 2. The external angles of the root are

θ± :=
w±

2n − 1
. The corresponding tuned copy Mn of M is contained in EM . Any

tuned copy M′ 6= M3 of M is either contained in the edge EM or disjoint from it.

5. Suppose that EM = En
M(w−, w+) is a parameter edge of order n and for c ∈ EM

consider Ec := En
c (w−, w+). Then fk

c (Ec) is disjoint from Ec \ {z′, z′′} for all k with

1 ≤ k ≤ n − 1. It may happen that fk
c (z′′) = z′, see also the second remark after

Theorem 6.4.

6. For c ∈ EM = En
M(w−, w+) consider Ec := En

c (w−, w+). Then fk
c (Ec) is not behind

z′ for all k with 1 ≤ k ≤ n − 1. In particular En
c (w−, w+) is a dynamic edge not

only for c ∈ EM but for all c ∈M behind c′.

7. Suppose that a ∈M1/3 and that Ea = En
a (w−, w+) is a dynamic edge with a ∈ Ea .

Then En
M(w−, w+) is a parameter edge.

Proof: 1.: fn−1
c is injective in the strip around Ec , thus fc is injective there if n > 1,

and fn−2
c is injective in the strip around E ′c := fc(Ec). Thus E ′c is an edge of order n−1.

The orientation of the vertices is preserved unless Ec separates 0 from −αc . Now

suppose c /∈ Ec . Since Ec is full, there is an open, simply connected neighborhood

of Ec not containing c and ∞, and two conformal branches of f−1
c (z) =

√
z − c are

defined there. If c ∈ {z′, z′′} and θ is an external angle of c, the square-root can be

defined in the exterior of Rc(θ) ∪ {c}, and it has a continuous extension to z = c.

Now the preimage of Ec consists of two edges with a common vertex at z = 0.

2.: The statement follows from Definition 6.2 and the correspondence from Propo-

sition 3.14.

3.: Ec , Ẽc shall be dynamic edges of orders n, ñ with n ≤ ñ. If the statement on

Ec ∩ Ẽc was wrong, a vertex z of Ec would be a pinching point of Ẽc . f ñ−1
c and thus

fn−1
c is injective in a neighborhood of z, and fn−1

c (z) is a pinching point of the edge

fn−1
c (Ẽc). Now fn−1

c (z) = ±αc yields a contradiction.

Consider parameter edges EM , ẼM of order n, ñ with n ≤ ñ. If a vertex c of EM was a

pinching point of ẼM , the corresponding dynamic edges Ec , Ẽc would be well-defined

and the vertex c of Ec would be a pinching point of Ẽc , in contradiction to the result

for dynamic edges.

4.: Suppose that c0 is a center of period m in EM . Then c0 ∈ Ec0 \ {z′, z′′} and fm
c0

is

2:1 in a neighborhood of c0 . On the other hand, fn−1
c0

is injective in a neighborhood

of c0 , thus m ≥ n. Denote the tuned copy of period 3 by M3 = c3 ∗ M. It is

contained in the “trunk” E3
M(1, 2), and the vertices of E3

M(1, 2) are the root and

the tip of M3 . The α-type Misiurewicz points separating M3 from its decorations

are vertices of at least two edges each, but the trunk is the only edge containing

M3 . The vertices of EM are α-type Misiurewicz points, thus they are not pinching

points of M3 and they do not belong to a tuned copy M′ 6= M3 of M, and we have

M′ ∩ EM = ∅ or M′ ⊂ EM \ {c′, c′′}. For n ≥ 4 we have 1/7 < φ± < ψ± < 2/7, and
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a short computation shows that

w± − 1

2n − 1
< φ± <

w±
2n − 1

< ψ± <
w± + 1

2n − 1
,

thus RM(θ±) are the only rays with periods m± dividing n, which are landing at

EM . Finally m± ≥ n implies m± = n. Now RM(θ±) are landing at the root of

a hyperbolic component of period n. It is primitive, for otherwise there would be

another component of period strictly dividing n. The formulas for θ± are verified

for M3 , too. For c ∈ EM , fn
c (Ec) is the part of Kc in the puzzle-piece 1, between

Rc(1/7) and Rc(2/7), thus fn+1
c (Ec) ∩ Ec ⊂ {αc} and fn+2

c (Ec) ∩ Ec ⊂ {αc}, and Ec

does not contain a point of period n+ 1 or n+ 2.

5.: Define F(θ) = 2θmod 1. If the statement was wrong, there would be a minimal

k ≤ n − 1 with Ec ⊂ fk
c (Ec) =: Ẽc for all c ∈ EM . Considering c = c′ shows that z′

is a characteristic preperiodic point (Section 3.4), thus fk
c (z′) is strictly before z′. If

both z′ and z′′ are separating the vertices of ẼM from each other, than Fk([φ−, ψ−])

covers [φ−, ψ−] and Fk([φ+, ψ+]) covers [φ+, ψ+]. If not, then at least one of these

intervals covers itself by Fk. In any case there is at least one angle θ of period

dividing k, such that γc(θ) ∈ Ec . Then γM(θ) is a root of period dividing k < n in

EM , in contradiction to item 4.

6.: z′ is a characteristic preperiodic point at least for c behind c′, thus it is never

mapped behind itself and fk
c (Ec) cannot be behind z′ for 1 ≤ k ≤ n − 1. Together

with item 5 this fact implies that for all parameters c behind c′, z′′ is never mapped

to a point behind z′. Denote by A the branch of M behind c′ that is not containing

EM . It may happen that fk
c (z′′) = z′, and in this case the external angles of z′′

are bifurcating at c = c′. Recall another principle from Section 3.4: the part of Kc

between αc and 0 is mapped to the part between αc and c. A little sketch shows that

ψ− and φ+ are still external angles of z′′ for c ∈ A, only the third angle is changing

at c = c′. Therefore Ec exists for c ∈ A as well.

7.: Consider the Misiurewicz point c′ := γM(φ−). We claim that c′ = γM(ψ+),

or equivalently, γc′(φ−) = γc′(ψ+). Otherwise there would be a Misiurewicz point

separating c′ and a, such that φ− and ψ+ are iterated to external angles of that

Misiurewicz point under F. But these angles would belong to (φ−, ψ−) ∪ (φ+, ψ+),

thus Ea \ {z′, z′′} would contain a preimage of α of order < n, and E1
a \ {αa, −αa}

would contain αa . Analogously we see that c′′ := γM(ψ−) = γM(φ+), and define EM

as the connected component of M1/3 \ {c′, c′′} between c′ and c′′, with these points

included. The same argument shows γc(φ−) = γc(ψ+) and γc(ψ−) = γc(φ+) for all

c ∈ EM , thus EM is a parameter edge.

We have seen in particular that for c ∈ EM , Ec does not contain a k-periodic point

with k ≤ n − 1. It is essential that Ec corresponds to some parameter edge: for c

in the wake between RM(25/112) and RM(29/112), e.g. c = γM(7/31), the dynamic

edges E8
c (51, 68) and E8

c (52, 67) of order 8 each contain a 4-periodic point. (These

edges belong to the frame F4
c (3, 4), and both are mapped onto E4

c (3, 4) by f 4
c .)
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6.2 Homeomorphisms on Edges

We shall construct homeomorphisms on many parameter edges inM1/3 , generalizing

Theorem 1.2. Items 1 and 3 of Remark 8.2 will provide a different view on these

mappings: for α-type Misiurewicz points c behind γM(9/56), there are three incident

parameter edges, and pasting together the corresponding homeomorphisms yields

expanding dynamics on M in a neighborhood of c. This is not true for all α-type

Misiurewicz points before γM(9/56), and we will consider an alternative construction

in Section 8.2. Now we shall employ the construction of jc from Section 1.2. It works

if γc(5/63) is a pinching point of Kc , i.e. for parameters c in the wake of the period-

6 hyperbolic component at γM(10/63). Maybe there are different constructions for

some edges in M1/3 which are not behind γM(10/63).

Theorem 6.4 (Homeomorphisms on Edges)

Suppose that EM = En
M(w−, w+) is a parameter edge of order n in M1/3 , in the

wake of the period-6 root at γM(10/63). Denote the vertices by a and b, such that

fn−1
b (b) = −αb and fm

a (a) = αa for some m ≤ n− 1.

There is a homeomorphism h : EM → EM with properties according to Theorem 5.4.

It is qualitatively expanding at a and contracting at b. Periods of hyperbolic compo-

nents are changed at most by a factor of n+3
n

. h is analytic in the interior of EM

and it has an extension h : PM → P̃M , which is quasi-conformal in PM \ EM . Here

PM is a suitable closed neighborhood of EM \ {a, b}, and P̃M is a puzzle-piece.

The orientation of an edge was defined by the ordering ≺ of the vertices, and not by

their orders as preimages of αc or as Misiurewicz points. Thus we may have a = c′

or a = c′′. This could have been avoided by defining the labeling of vertices such

that always a = c′, but then we would not know if the largest tuned copy Mn in

EM has θ− < θ+ or vice versa, and whether its tip points towards c′ or c′′. Moreover

the recursion of Lemma 7.4 would become more involved.

What happens if Ec and fk
c (Ec) are not disjoint for c ∈ EM and some 1 < k ≤ n− 1

(cf. item 5 of Proposition 6.3)? Then k is unique, these edges have a common vertex,

and fk
c maps the higher-order vertex of Ec to the lower-order vertex. By item 6 of

Proposition 6.3, Ẽc := fk
c (Ec) is not behind Ec , thus b is behind a, and a = c′, b = c′′.

The common vertex of Ec and Ẽc is z′c = fk
c (z′′c ). For c = a the vertex z′′a has six

external angles. Examples of this phenomenon will be given in Section 7.3. We will

construct h from Theorem 5.4, which required a modified proof in this case.

Proof of Theorem 6.4:

For c ∈ EM , Ec := En
c (w−, w+) is a dynamic edge in Kc , with c ∈ Ec . φ± , ψ±

are external angles of the vertices of Ec . They are renamed to Θ±
1 , Θ±

3 according

to Figure 5.1, e.g. Θ−
1 = φ− if a = c′ and Θ−

1 = φ+ if a = c′′. We have n ≥ 4,

since there is no hyperbolic component of a period ≤ 3 in M1/3 except for that at

γM(1/7).

There is a suitable branch of f−(n−1)
c : E1

c → Ec , in fact the mapping is conformal

in a strip around the edge. According to Section 1.2 there is a jc mapping a strip
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around E1
c to itself, expanding at αc and contracting at −αc . It is given by jc = f 3

c

between αc and γc(17/126), and by jc(z) = f−3
c (−z) between γc(17/126) and −αc .

The construction of jc is suggested by the local dynamics of fc at ±αc . Piecing

the two formulas together is possible only at the angles 17/126 and 73/126, thus

the construction works for all parameters c ∈ M1/3 with γc(17/126) = γc(73/126),

which characterizes the 1/2-sublimb of the period-3 component, starting with the

period-6 component at γM(10/63) = γM(17/63).

We employ the notations from Section 5.1. Set zc := f−(n−1)
c (γc(17/126)) ∈ Ec and

z̃c := f−(n−1)
c (γc(5/63)) ∈ Ec . The strip Pc around Ec , bounded by Rc(Θ

±
1 ) and

Rc(Θ
±
3 ), is decomposed into Vc and Wc , which are separated by the rays Rc(Θ

±
2 )

landing at zc . (Labeled such that αc ∈ fn−1
c (Vc) and −αc ∈ fn−1

c (Wc) .) Analogously

the rays Rc(Θ̃
±
2 ) landing at z̃c separate Ṽc from W̃c . The first-return numbers are

k̃v = kw = n and kv = k̃w = n + 3, since for all c ∈ EM , the critical point 0 is

between γc(5/63) and γc(17/126). The preliminary mapping g(1)
c = fc ◦ ηc is defined

by ηc := f−(n−1)
c ◦ jc ◦ fn−1

c in Pc = Vc ∪Wc , and by ηc := id otherwise. It has shift

discontinuities on six external rays. We have ηc = f−(n−1)
c ◦ fn+2

c : Vc → Ṽc and

ηc = f−(n+2)
c ◦

(
− fn−1

c

)
: Wc → W̃c . In Vc we may write ηc = f−(n−2)

c ◦
(
± fn+1

c

)
,

where the sign depends on EM according to fn−2
c (Ec) = ±E2

c (1, 2). We may perform

more cancellations until a “−” is obtained.

By the definition of parameter edges, the angles φ±, ψ± do not bifurcate for c ∈
EM . Note that no iterate of zc returns to Ec : the first n − 1 iterates belong to

edges disjoint from Ec , and afterwards they belong to the 3-cycle. Then the only

iterate between Rc(1/7) and Rc(2/7) is γc(10/63), which does not belong to Ec .

Now Assumption A of Section 5.1 is satisfied, and g(1)
c was obtained according to

Definition 5.1. Theorem 5.4 yields the construction and properties of the desired

homeomorphism h : EM → EM .

6.3 Graphs of Maximal Edges

According to Proposition 6.3, edges are partially ordered by inclusion. A dynamic

edge Ec ⊂ Kc of order n is maximal regarding this order, iff fk
c (Ec) does not belong

to the puzzle-piece 12 (between Rc(1/7) and Rc(2/7)) for any 1 ≤ k < n, and iff the

external angles of its vertices do not undergo a bifurcation, i.e. the corresponding

dynamic rays are landing together in the same pattern for all c ∈ M1/3 . These

maximal edges form an infinite, simply connected graph with three edges at every

vertex, this property motivated the term “edge”. The indices of the maximal edges

are obtained recursively as follows: if Ec = En
c (w−, w+) then w+ = w− + 1, or

w+ = w− + 1− 2n if Ec is separating αc and βc . The two maximal edges attached to

the higher-order vertex of Ec = En
c (w−, w−+1) are En+1

c (2w−+1, 2w−+2) (turning

left) and En+2
c (4w− + 1, 4w− + 2) (turning right), with some modification for edges

between αc and βc . The orbits of maximal edges are easy to follow, thus this notion

provides an intuition for the dynamics of fc on Kc , cf. item 5 of Remark 7.5.
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Since the external angles of a maximal dynamic edge Ec = En
c (w−, w+) do not

bifurcate, Proposition 3.14 shows that EM := En
M(w−, w+) is a parameter edge in

M1/3 , when Ec is in the puzzle-piece 12. Now EM is a maximal parameter edge,

and every maximal parameter edge corresponds to a maximal dynamic edge. Thus

the maximal parameter edges form a graph with three edges at every vertex, except

for the root of the limb, which belongs to one edge only. The abstract graph is a

subgraph of the dynamic one, with the same external angles at the vertices. The

indices satisfy the recursion of the above, and a Fibonacci sequence yields the number

of edges of a given order.

Ec

EM

9/56

11/56

15/56

23/112

29/112

Figure 6.2: Some maximal edges of Kc and M1/3 are marked by the external rays landing
at the vertices. Ec and EM are the edges considered in Sections 1.2 and Figure 5.1.

All maximal dynamic or parameter edges are disjoint except for common vertices.

Now M1/3 and the three branches of Kc \{αc} each consist of the union of maximal

edges plus an exceptional set. Every component of the exceptional set is character-

ized by a unique connected sequence of maximal edges approaching it, turning left

or right at every vertex. If the symbolic sequence of left/right turns is eventually pe-

riodic, then the corresponding exceptional point is a periodic or preperiodic point in

Kc or a Misiurewicz point in M1/3 , respectively. We shall show that all components

of the exceptional set are points, moreover it is a Cantor set. In the dynamic case,

this follows from the standard Yoccoz technique (Sections 3.5 and 4.4): the sequence

of maximal edges approaching a component of the exceptional set corresponds to a

nested sequence of sector-shaped puzzle-pieces, and the moduli of the corresponding

annuli take at most two values, thus their sum is divergent. The estimate extends

to the parameter annuli, but it is more elegant to note that components of the ex-

ceptional set of M1/3 are fibers, which are not contained in a tuned copy of M, and

to apply the Yoccoz Theorem 4.8. The external angles of the exceptional set form

a Cantor set, and since the impressions of the rays are trivial, the exceptional set is

perfect as well.

Definition 6.5 (Narrow and Tight Misiurewicz Points)

1. An α-type Misiurewicz point a of order k, i.e. fk
a (a) = αa with minimal k, is

called narrow, if the branches of Ka behind z = a are mapped 1:1 onto the branches
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behind −αa by fk−1
a .

2. An α-type Misiurewicz point a of order k is called tight, if a neighborhood of

a in Ka is mapped 1:1 onto the branch before αa by fk−1
a , i.e. onto the connected

component of Ka \ {αa} that contains z = 0.

The notion of narrow Misiurewicz points is due to Riedl [R1, Definition 4.41],

see below. Every tight Misiurewicz point is narrow but the converse is wrong:

γM(359/1792) is narrow but not tight. Every vertex of maximal parameter edges is

tight (except for the root of M1/3).

Theorem 6.6 (Maximal Edges)

1. For c ∈ M1/3 , Kc consists of the union of maximal dynamic edges plus an

exceptional set, and M1/3 consists of the union of maximal parameter edges plus an

exceptional set. These exceptional sets are Cantor sets.

2. All maximal edges in the left branch of M1/3 are mutually homeomorphic by

orientation-preserving homeomorphisms. If a is a tight α-type Misiurewicz point

behind γM(9/56), the parameter edges that are maximal in the branches behind a are

mutually homeomorphic.

3. If a is a tight α-type Misiurewicz point behind γM(9/56), then there is a homeo-

morphism interchanging the branches ofM behind a, which is orientation-preserving

except at a.

4. Suppose that c1, c2 belong to the exceptional set of M1/3 . Then there is a ho-

meomorphism h : M→M, which is permuting some maximal edges in M1/3 and

mapping c1 7→ c2 . It is compatible with tuning and orientation-preserving at branch

points except at some vertices of maximal edges. We may choose c1 to be a Misi-

urewicz point and c2 as the landing point of an irrational parameter ray.

The Branner–Fagella reflection of Section 4.5 maps maximal edges in the left branch

to maximal edges in the right branch, reversing the orientation. Presumably the

family of mutually homeomorphic edges in the left branch of M1/3 is much larger

than the family of maximal edges: whenever the path to an edge does not branch

at hyperbolic components but only at Misiurewicz points, the edge will be homeo-

morphic to the maximal ones, cf. the discussion in Section 7.3. Items 2, 3 and 4 rely

on homeomorphisms from Section 8.3. The notions of edges and tight Misiurewicz

points, and most of their properties, generalize to other limbs (Section 7.4). But

items 2, 3 and 4 generalize to other limbs of M only partially. For every branch

point a, Riedl obtains homeomorphisms between subtrees contained in the branches

behind a, and the construction in the dynamic plane is simpler for narrow Misi-

urewicz points. Maybe homeomorphisms between full branches can be obtained by

the construction suggested in [R1, Section 5.1.4]. Our homeomorphism is defined

piecewise, it maps full branches but it is not clear if it generalizes to all narrow and

non-narrow Misiurewicz points. Certainly this construction does not work at the

principal Misiurewicz point γM(9/56) and before it, and for limbs Mp/q with q ≥ 4.

In item 5 of Remark 9.9 we collect some homeomorphisms like those of item 4 above,
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which show a different behavior than those constructed by a single surgery.

Proof of Theorem 6.6:

1.: The arguments have been sketched before Definition 6.5.

2.: The proof relies on a combination of homeomorphisms from Proposition 7.7

and of homeomorphisms that are expanding at β-type Misiurewicz points or other

endpoints, it will be given in Section 8.3.

3.: If a is a vertex of maximal edges in M1/3 , strictly behind γM(9/56), all maximal

edges behind a are mutually homeomorphic by item 2. Thus a homeomorphism

between the branches behind a is constructed piecewise on these edges, it extends

to the exceptional set. If a is tight but not a vertex of maximal edges, the proof is

analogous.

4.: The exceptional points are characterized by unique sequences of maximal edges,

turning left or right at common vertices. The idea is to construct a sequence of

homeomorphisms (hn), which are finite compositions of mappings given by item 3.

hn shall map the first n vertices leading to c1 to the first n vertices leading to c2 .

Since the para-puzzle-pieces of the above are shrinking to points, for every ε > 0

there is an N with the following property for all n, m ≥ N : for |c−c1| ≥ ε/2 we have

hn(c) = hm(c), thus ‖h−1
n −h−1

m ‖∞ < ε, and for |c−c2| ≥ ε/2 we have h−1
n (c) = h−1

m (c),

thus ‖hn−hm‖∞ < ε. Now (hn) converges uniformly to a homeomorphism h with the

desired properties. Alternatively h is defined piecewise on the edges and extended

to the exceptional set.
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7 Frames

We shall give a combinatorial description of dynamic frames and parameter frames

in M1/3 , prove that certain edges contain hierarchies of frames, and construct ho-

meomorphisms between frames. The generalization to other limbs and the relations

between different limbs and homeomorphisms are discussed later.

7.1 Dynamic and Parameter Frames

For c ∈ M1/3 , the preimages of αc of orders ≤ 3 are stable, but there are two

preimages of order 4 in the edge E1
c = E1

c (0, 1) whose qualitative location depends

on the location of the parameter c inM1/3 , or of the critical value c in Kc . The Julia

set contains a preimage of αc of order 3 that has the external angles 9/56, 11/56 and

15/56, and there is a Misiurewicz point a ∈M1/3 with the same external angles, it

is the principal Misiurewicz point of the limb, i.e. the image of −2 under the tuning

map for period 3. When c is behind a, the two preimages of γc(9/56) are between

±αc and the dynamic frame F1
c is defined by disconnecting Kc at these two points

and collecting three of the five resulting components together with the two branch

points, resulting in a compact connected full set containing z = 0. The frame has

two arms whose qualitative location depends on whether c is in the left or right

branch of M1/3 . Equivalent definitions can be given by intersecting Kc with a strip

bounded by four external rays, or by noting that F1
c is mapped 2:1 onto the part of

Kc behind γc(9/56), including that branch point.

Analogously to the definition of dynamic edges in the previous chapter, a connected

subset Fc ⊂ Kc is called a dynamic frame of order n, if it is mapped onto F1
c by

fn−1
c , and if this mapping is injective in a neighborhood of Fc . The order n specifies

that Fc is mapped 2:1 onto the branches behind γc(9/56) by fn
c . The vertices of

the frame are the two corresponding preimages of γc(9/56). As in Section 6.1 we

see that the six bounding angles at the vertices can be expressed in terms of three

integers according to the following formula, and the frame is specified uniquely by

these indices:

θ±1 =
56u± + 9

56 · 2n θ±2 =
56u± + 11

56 · 2n θ±3 =
56u± + 15

56 · 2n . (7.1)

A frame is oriented by the fact that one vertex is behind the other one when looking

from αc (not from 0), and looking in this direction the angles θ−i shall be on the

right hand side and θ+
i on the left hand side, in the order shown in the following
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figure. A general principle says that the parts of Kc between ±αc and 0 are mapped

onto the part between αc and c by fc , which explains the qualitative location of the

two arms of a frame of order n, since by fn
c these two subsets are mapped onto the

branch of Kc behind γc(9/56) that does not contain c.

θ−1

θ−2

θ−3θ+
1

θ+
2

θ+
3

θ−1

θ−2

θ−3

θ+
1θ+

2θ+
3

θ−1θ−2θ−3

θ+
1

θ+
2

θ+
3

θ−1

θ−2

θ−3

θ+
1θ+

2θ+
3

Figure 7.1: Frames are defined by disconnecting Kc or M at two branch points and
collecting three of the resulting five components, or by intersecting the set with a strip
marked by four external rays. The six external angles are called bounding angles of the
frame, although the strip is bounded by only four of them. Top: typical dynamic frames
Fc for c in the left or right branch of M1/3 . Bottom: corresponding parameter frames in
the left and right branch. For dynamic frames with c in the left branch and for parameter
frames in the left branch, the rays R∗(θ−1 ), R∗(θ−2 ), R∗(θ+

3 ) are landing together.

Definition 7.1 (Dynamic Frames)

1. For c in the branches of M1/3 (behind γM(9/56)), define F1
c ⊂ Kc as described

above. A compact connected full subset Fc ⊂ Kc is called a dynamic frame of order

n, if it is mapped onto F1
c by fn−1

c and fn−1
c is injective in a neighborhood of Fc .

2. The external rays for six angles θ±i are landing in the pattern of Figure 7.1, such

that γc(θ
−
1 ) = γc(θ

+
3 ) separates γc(θ

−
3 ) = γc(θ

+
1 ) from αc . These two points are the

vertices of the frame. Removing them from Kc yields five connected components,

three of which belong to Fc .

3. The θ±i are the bounding angles of Fc . There are u± ∈ N0 with (7.1), and we

write Fn
c (u−, u+) := Fc .
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Now parameter frames are defined by their correspondence to dynamic frames in

the sense of Proposition 3.14, i.e. for all parameters c ∈ FM we require that there is

a dynamic frame Fc containing the critical value c, with the same external angles at

the vertices. Sometimes this correspondence is indicated by the indices of the above,

Fn
M(u−, u+) corresponds to Fn

c (u−, u+). The construction of parameter frames relies

on the principles from Proposition 3.14, cf. the remark after Definition 6.2. Examples

will be given in Sections 7.2 and 7.3.

Definition 7.2 (Parameter Frames)

Suppose that n, u−, u+ ∈ N and that angles θ±i ∈ [9/56, 15/56] are given by (7.1).

Assume that the corresponding parameter rays are landing at two α-type Misiurewicz

points in the pattern of Figure 7.1. A compact connected full subset FM ⊂ M1/3 is

defined by disconnecting M at these points and collecting them with three of the five

connected components in the obvious way. Now FM is a parameter frame of order

n and denoted by Fn
M(u−, u+), if Fn

c (u−, u+) is a dynamic frame for all c ∈ FM .

The two Misiurewicz points are called vertices and the θ±i are the bounding angles

of the frame.

The following proposition and its proof are analogous to Proposition 6.3. In partic-

ular we see that a parameter frame of order n contains a tuned copy of order n. This

fact motivated the name “frame”, since tuned copies are called “windows” in real

dynamics. It is a project of current research to describe maximal tuned copies by the

combinatorics of nested edges and frames, cf. the remarks in Sections 7.3 and 7.4.

For c = a the dynamic frames degenerate to stars, the two vertices coalesce. This

case shall be excluded throughout this chapter, but it will become important in

Sections 8.4 and 8.5, when we note that parameter frames behave asymptotically

like the star-shaped dynamic frames in Ka for c → a. In fact this was our original

motivation for considering these sets, and the homeomorphism from Section 1.2 was

discovered out of a comparison of the orbits of frames.

Proposition 7.3 (Basic Dynamics of Frames)

1. Consider c in the branches of M1/3 and a dynamic frame Fc of order n. If n > 1,

then fc(Fc) is a frame of order n−1. If c /∈ Fc , then f−1
c (Fc) consists of two disjoint

frames of order n+ 1.

2. Suppose that FM = Fn
M(u−, u+) is a parameter frame, and consider c ∈ M1/3 .

The parameter satisfies c ∈ FM , iff Fc = Fn
c (u−, u+) is a dynamic frame and the

critical value satisfies c ∈ Fc .

3. Suppose that c ∈M1/3 and Fc, F̃c are dynamic frames. They are either disjoint,

or one frame is contained in the other one. Parameter frames have the analogous

property.

4. Fn
M(u−, u+) contains a primitive hyperbolic component Ωn of period n, and no

other component of a period ≤ n + 3. The external angles of the root are θ± :=
u±

2n − 1
. The corresponding tuned copy Mn of M is contained in FM , separating the

vertices. We have θ±2 < θ± < θ±3 in the left branch and θ±1 < θ± < θ±2 in the right
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branch. Any tuned copy M′ of M is either contained in the parameter frame FM

or disjoint from it.

5. Suppose that FM = Fn
M(u−, u+) is a parameter frame of order n. Consider

c ∈ FM and set Fc := Fn
c (u−, u+). For 1 ≤ k ≤ n− 1, fk

c (Fc) is disjoint from Fc .

6. For c ∈ FM = Fn
M(u−, u+) consider Fc := Fn

c (u−, u+). Then fk
c (Fc) is not

behind Fc for all k with 1 ≤ k ≤ n−1. In particular the dynamic frame Fn
c (u−, u+)

exists for all c ∈M in or behind FM .

7. Suppose that a ∈ M1/3 and that Fa = Fn
a (u−, u+) is a dynamic frame with

a ∈ Fa . Then Fn
M(u−, u+) is a parameter frame.

7.2 Hierarchies of Homeomorphic Frames

We shall construct frames on certain edges. The parameter edges EM considered

here are behind a = γM(9/56), in the weak sense that a might be the lower vertex

of EM . Dynamic frames on edges Ec are considered only for c behind a in the strict

sense of Definition 3.12, in particular c 6= a.

Lemma 7.4 (Recursion for Edges and Frames)

Suppose that Ec = En
c (w−, w+) is a dynamic edge in Kc for a parameter c in the

branches of M1/3 (behind γM(9/56)), or that EM = En
M(w−, w+) is a parameter edge

in M1/3 behind γM(9/56). Then E∗ consists of the frame Fn
∗ (w−, w+) and two edges

E ′∗ , E ′′∗ of order n + 3. These subsets are disjoint except for two common vertices.

We have E ′∗ = En+3
∗ (8w− + 1, 8w+ + 2) and E ′′∗ = En+3

∗ (8w− + 2, 8w+ + 1). The

orientation is given in the following figure (in the right branch of M1/3 , the landing

pattern of R∗(θ
±
2 ) is different):
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E ′∗ E ′′∗Fn

∗ (w−, w+)

ψ+ θ+
3 θ+

2 θ+
1 φ+

φ− θ−1 θ−2 θ−3 ψ−

Proof: The vertices of F1
c ⊂ E1

c are mapped to −αc by f 3
c . Thus for Ec = E1

c ,

E1
c \F1

c ∪{γc(θ
−
1 ), γc(θ

−
3 )} consists of two edges of order 4, each of which is mapped

onto E1
c by f 3

c . If Ec is a dynamic edge of order n, it is mapped 1:1 onto E1
c by fn−1

c .

The corresponding preimages of F1
c and of the two edges of order 4 are a frame of

order n and two edges of order n+3. The indices of the frame are obtained e.g. from

2n[θ−1 , θ
−
3 ] = [9/56, 15/56] + w− and (7.1). The indices of the edges are obtained

from (6.1) and from noting that φ−, θ
−
1 , θ

+
3 , ψ+ are the bounding angles of E ′c , and

θ−3 , ψ−, φ+, θ
+
1 are the bounding angles of E ′′c .

Now we turn to a parameter edge EM = En
M(w−, w+). For all c ∈ EM , consider Ec :=

En
c (w−, w+). It consists of E ′c = En+3

c (8w−+1, 8w++2), E ′′c = En+3
c (8w−+2, 8w++1)

and Fn
c (w−, w+) as above. By Definitions 6.2 and 7.2 there are corresponding
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parameter edges E ′M = En+3
M (8w− + 1, 8w+ + 2), E ′′M = En+3

M (8w− + 2, 8w+ + 1) and

a parameter frame Fn
M(w−, w+) contained in EM . If a = γM(9/56) is a vertex of EM ,

the dynamic subedges are obtained for all c ∈ EM , but for c = a the dynamic frame

degenerates; this does not effect the parameter frame.

Remark 7.5 (Edges and Frames)

1. It is not true that every frame is obtained from an edge by Lemma 7.4, cf. the

discussion of pseudo-edges in Section 7.3.

2. For c ∈M1/3 , there are two preimages of αc of order 4 in E1
c . For c in the trunk

of M1/3 , before γM(9/56), these two points are not separating αc from −αc , and

there is no analog of the frame F1
c in E1

c , and no edge with one vertex at αc and the

other vertex between αc and 0; see also Section 8.5. For c = γM(9/56), the dynamic

frames degenerate to six-stars, cf. Section 8.4.

3. Both parameter edges and parameter frames can be constructed by employing

Proposition 3.14. Every edge corresponds to a strip-shaped (para-) puzzle-piece.

The next subdivision of the piece consists of three strips and two sectors, and the

frame from Lemma 7.4 corresponds to the middle strip plus the two sectors. The

hierarchy of below corresponds to a further recursive subdivision of the outer strips,

while keeping the inner strip and the sectors. Note that every frame satisfies θ±3 −
θ±2 = 2(θ±2 − θ±1 ), thus we expect that the arms of a parameter frame are relatively

longer in the right branch of M1/3 compared to the left branch, cf. Figure 7.1.

4. The recursive application of Lemma 7.4 yields a hierarchy of frames on an edge

EM of order n: one frame of order n, two of order n + 3, four of order n + 6 . . . ,

cf. the example in Figure 7.2. The hierarchy of dynamic frames on E1
c is obtained

from the 2:1 mapping f 3
c : E1

c \ F1
c → E1

c . It is qualitatively similar to the mapping

x 7→ µx(1 − x), µ > 4 on the unit interval. The non-escaping points can be char-

acterized by itineraries in both cases, and a frame in the hierarchy is described by

a finite itinerary: it is a sequence of symbols denoting which iterates of the frame

fall between αc and F1
c or between F1

c and −αc . After a finite number of steps, the

frame is mapped onto F1
c and thus leaves the domain of the restricted f 3

c . Analo-

gous results hold for the corresponding mappings of external arguments. The angles

of rays accumulating at the edge but not at a frame in the hierarchy form a subset

of a Cantor set, and pairs of angles correspond to components of the exceptional set

“between” the frames. We shall see below that these components are points.

5. The notions of maximal edges and the frames in the corresponding hierarchies

provide a tool and an intuition to follow the orbit of some z ∈ Kc : first follow the

orbit of the maximal edge containing z until E1
c is reached. Then follow the orbit

of the frame containing the image of z until it becomes F1
c . Only at this point we

must know the position of z in the original maximal frame more exactly. Cf. the

discussion of edges within frames in Section 7.3.

A family of homeomorphisms on the hierarchy of subedges will show that all frames

in the hierarchy on a parameter edge are homeomorphic. Neglecting the exceptional

set, an edge consists of a countable family of disjoint building blocks. The frames
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provide a finer decomposition than the fundamental domains of a single homeomor-

phism. Now maximal tuned copies of M form even finer building blocks, but there

is no explicit description of the edge as a union of tuned Mandelbrot copies, and the

description in terms of frames is simple.
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Jγ∗(11/56) γ∗(23/112)

Figure 7.2: A hierarchy of frames on the dynamic edge E4
c (3, 4) from γc(11/56) to

γc(23/112) in Kc , and on the parameter edge E4
M(3, 4) from γM(11/56) to γM(23/112)

in M1/3 . (Note that the image is rotated.) See also Figure 1.3 on page 19.

Theorem 7.6 (Frames on a Parameter Edge)

1. Suppose that EM = En
M(w−, w+) is a parameter edge in the branches of M1/3

(behind γM(9/56)). It contains the parameter frame Fn
M(w−, w+), two frames of

order n+3, four of order n+6 . . . , such that the recursion of Lemma 7.4 is satisfied.

A hierarchic structure for this family of frames is provided by the recursion.

2. The parameter edge EM is the disjoint union of the frames in this hierarchy plus

an exceptional set, which is contained in some Cantor set.

3. The homeomorphism h : EM → EM according to Theorem 6.4 is mapping maximal

frames (in EM) to maximal frames.

4. All frames in the same hierarchy are pairwise homeomorphic. Neglecting the

exceptional set, EM consists of a countable family of homeomorphic building blocks.

Proof of Theorem 7.6:

1. The recursive application of Lemma 7.4 yields this family of parameter frames.

In every step, edges of some order are replaced with a frame of the same order and

two edges of higher order. In Figure 7.2 every frame is connected symbolically with

its two descendants. The frames obtained in this way are mutually disjoint. There

is a corresponding subdivision of the intervals of external angles belonging to the

edge EM : in each step of the recursion, the middle 6/8 corresponds to the frame

and the first and last 1/8 correspond to the smaller edges. Note that a frame in EM
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is maximal in EM (with respect to inclusion), iff it belongs to this hierarchy. It is

maximal in M1/3 , if it is maximal in EM and EM is a maximal parameter edge.

2. EM is the union of these frames plus an exceptional set. There is a corresponding

exceptional set of angles θ, such that the limit set of RM(θ) belongs to EM but not

to a frame in the hierarchy. Every connected component of the exceptional set in

EM corresponds to a unique pair of angles in the exceptional set of angles, which

is approximated by pairs of equivalent rational angles from both sides. Thus this

connected component is a fiber (Section 3.5), and it is trivial by Theorem 4.8: every

hyperbolic component and every tuned copy of M in EM belongs to some frame,

since there is no interval of angles for the exceptional set, and since the vertices of a

frame cannot disconnect a tuned copy. The exceptional set united with the vertices

of frames in the hierarchy forms a Cantor set. (It is perfect since the set of angles

has this property and the impressions of the rays are trivial.)

For a dynamic edge Ec , c behind γM(9/56), the hierarchy of dynamic frames and

the exceptional set are obtained analogously. Its connected components are fibers

and they do not meet a preimage of the little Julia set, when fc is simply renormal-

izable. Thus these fibers are trivial: if Kc is not locally connected, fc will be simply

renormalizable and item 5 of Theorem 4.8 applies. If the symbolic sequence of the

recursive subdivision is eventually periodic, i.e. if the exceptional point is (pre-) pe-

riodic in the dynamic case or a Misiurewicz point in M, the method of divergence

from Section 3.5 provides an alternative proof, but in the general case we need the

results of Yoccoz and Schleicher.

3. h : EM → EM is constructed by straightening a quasi-regular quadratic-like

mapping gc related to fc ◦ηc for c ∈ EM , where ηc := f−(n−1)
c ◦jc ◦fn−1

c is the identity

except in a neighborhood of Ec , and jc : E1
c → E1

c . A frame Fc = Fm
c (u−, u+)

that is maximal in Ec := En
c (w−, w+) is mapped to a frame in E1

c by fn−1
c without

returning to Ec , and it is mapped to another maximal frame by jc since γc(17/126)

belongs to the exceptional set. The vertices of these frames are never returning to

Ec\{z′, z′′}, and ηc maps Fc to another maximal frame F ′
c = Fm′

c (u′−, u
′
+) in Ec . By

item 6 of Theorem 5.4, h maps the vertices of the corresponding parameter frame

FM to those of F ′
M , thus h(FM) = F ′

M .

4. In the notation of Lemma 7.4, set F ′
∗ := Fn+3

∗ (8w− + 1, 8w+ + 2) ⊂ E ′∗ and

F ′′
∗ := Fn+3

∗ (8w− + 2, 8w+ + 1) ⊂ E ′′∗ . Denote by h : EM → EM the homeomorphism

from Theorem 6.4, which is constructed from gc = fc ◦ ηc for c ∈ EM , where ηc :=

f−(n−1)
c ◦ jc ◦ fn−1

c on Ec . Now jc maps F4
c (9, 2) 7→ F1

c (1, 0) 7→ F4
c (10, 1), thus

ηc maps F ′
c 7→ Fc 7→ F ′′

c or F ′′
c 7→ Fc 7→ F ′

c. Since the vertices of these frames

never return to Ec under the iteration of fc or gc , the homeomorphism h maps

F ′
M 7→ FM 7→ F ′′

M or F ′′
M 7→ FM 7→ F ′

M . Now all frames in the hierarchy are

homeomorphic, since this argument is applied to every step of the recursion. Note

that a countable family of homeomorphisms is needed to show that all frames are

homeomorphic, while a single homeomorphism has a countable family of distinct

infinite orbits of frames.
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Item 1 of the following proposition is needed to show that certain maximal edges

are homeomorphic, cf. Theorem 6.6 and Section 8.3. Item 2 will be employed in

the beginning of Section 9.4. Items 3 and 4 yield homeomorphisms with unusual

properties, cf. item 5 of Remark 9.9.

Proposition 7.7 (Piecewise Defined Homeomorphisms)

1. Suppose that EM is a parameter edge behind γM(9/56). It is homeomorphic to any

of the edges obtained from the recursive application of Lemma 7.4.

2. In the notation of Lemma 7.4, suppose that h̃ : E ′M → EM is a homeomorphism

according to item 1. Extend it to a mapping h̃ : EM → EM with h(c) ≡ γM(ψ−) for

c ∈ EM \ E ′M . Then there is a sequence of homeomorphisms h̃n : EM → EM , which are

converging uniformly to h̃.

3. Suppose that EM is a parameter edge behind γM(9/56) with vertices c′, c′′, and

that c1, c2 6= c′, c′′ belong to the exceptional set. Then there is a homeomorphism

h : EM → EM , which is permuting some maximal frames and mapping c1 7→ c2 .

It is orientation-preserving and compatible with tuning. We may choose c1 to be a

Misiurewicz point and c2 as the landing point of two irrational parameter rays.

4. Consider a parameter edge EM of order n behind γM(9/56). There is a homeo-

morphism h : EM → EM , which is not Lipschitz continuous at the vertex c′. It is

orientation-preserving and compatible with tuning.

Proof of Proposition 7.7:

1.: In the notation of Lemma 7.4, we will construct a homeomorphism h̃ : E ′M → EM ,

the case of E ′′M → EM is analogous. Set a := γM(φ−) and denote by h : EM → EM and

h′ : E ′M → E ′M the homeomorphisms according to Theorem 6.4, which are expanding

at a (the labeling there is different from here if a is the higher-order vertex of EM or

E ′M). h is contracting at b := γM(ψ−), and h′ is contracting at b′ := γM(θ−1 ). Choose

a pinching point c0 with a ≺ c0 ≺ b′ and h(c0) = h′(c0), e.g. c0 := h−2(b′), which is

the “left” vertex of the “left” frame of order n+ 6 in E ′M .

Set S0 := S ′0 := {c ∈M| c0 � c 6� h(c0)} and Sk := hk(S0), S ′k := h′k(S ′0) for k ∈ Z.

The family (Sk) forms fundamental domains both for the expanding dynamics of

h at a and for its contracting dynamics at b, and the sets (S ′k) are fundamental

domains for h′ at a and b′. Now h̃ : E ′M \ {a, b′} → EM \ {a, b} is defined piecewise

by h̃ := hk ◦ h′−k : S ′k → Sk , k ∈ Z. It is continuous and extends continuously

to h̃(a) := a, h̃(b′) := b by item 5 of Theorem 5.4. Note that h̃ ◦ h′ = h ◦ h̃ on

E ′M . Alternatively we could set h̃ := id on {c ∈ M| a � c 6� h(c0)}. h̃ extends to

a neighborhood of E ′M , but it might be not quasi-conformal (in the exterior) unless

neighborhoods of a and b′ are excluded.

2.: Extend h̃ to a continuous, surjective mapping EM → EM by setting h̃ ≡ b on

EM \ E ′M . Observing that S1 =
⋃

k≥1
S ′k , construct a sequence of homeomorphisms

h̃n : EM → EM by (7.2) below, then ‖h̃n − h̃‖∞ ≤ diam
⋃

k≥n+1
Sk , which tends to 0
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by item 5 of Theorem 5.4.

h̃n :=



h̃ :
⋃

k≤n
S ′k → ⋃

k≤n
Sk

hn ◦ h′−n :
⋃

k≥n+1
S ′k → Sn+1

hn :
⋃

k≥2
Sk → ⋃

k≥n+2
Sk .

(7.2)

3.: For every c 6= c′, c′′ in the exceptional set there is a unique sequence of parameter

frames (Fn) in EM , such that F1 is the frame of lowest order separating c′ and c, and

Fn+1 is the frame of lowest order separating Fn and c. These frames are maximal

in EM , and they are well-defined, since there is a frame of lower order between two

frames of equal order. Consider the sequences of F (1)
n and F (2)

n corresponding to the

chosen exceptional points c1 and c2 , respectively. We need a bijection η of the set of

maximal frames in EM onto itself, which is sending F (1)
n to F (2)

n and is monotonous,

i.e. whenever F is separating c′ and F ′, then η(F) is separating c′ and η(F ′). Now

η is defined on the sequence (F (1)
n ) and extended inductively: when η is already

defined on F and F ′ but not for frames separating F and F ′, then η shall map the

frame of lowest order between F and F ′ to the frame of lowest order between η(F)

and η(F ′). When η is defined on F and not between c′ and F or between F and c′′,

the definition is extended analogously. Now h is defined on the union of maximal

frames, such that it maps F to η(F) as a homeomorphism according to Theorem 7.6.

It extends to a homeomorphism of EM , since the fibers of the exceptional points and

of the vertices are trivial, and we have h(c1) = c2 . (The same technique could be

used to prove item 1, but then item 2 would be more difficult.)

4.: Analogous to Proposition 3.10 and Section 8.5, there is a sequence of roots

cj, j ∈ N0 , with the following properties: cj belongs to a frame Fj of order 3j+n, it is

the root of the hyperbolic component of lowest order in the frame. cj+1 is separating

cj from a, and the sequence is converging towards a. For all c in the connected

component of M between cj+1 and cj , we have R1|ρa|−3j ≤ |c− a| ≤ R2|ρa|−3j with

ρa = 2αa = f ′a(αa). If h is the usual homeomorphism on EM from Section 6.2, we

have h(cj+1) = cj , and this estimate implies that h is Lipschitz continuous at a. Here

we construct a monotonous bijection η from the set of maximal frames in EM onto

itself, such that η(F2j) = Fj for j ∈ N0 , by extending this definition recursively as

in the proof of item 3. Now h shall map F to η(F) as a homeomorphism according

to Theorem 7.6. It extends to a homeomorphism of EM , and we have h(c2j) = cj .

The estimate given above shows that h is Hölder continuous with optimal exponent

1/2 at c′, thus it is not Lipschitz continuous there. (By mapping Fj2 to Fj , we

obtain another homeomorphism h which is not even Hölder continuous at c′.)

7.3 The Structure of Frames

Many results on the structure of Julia sets are obtained from a simple principle:

each of the parts between 0 and ±αc is mapped to the part between αc and c by fc ,
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such that ±αc is mapped to αc and 0 is mapped to c. For parameters c in the left

branch of M1/3 behind a = γM(9/56), the vertices of F1
c are mapped to γc(9/56) and

the arms attached to the vertices are mapped to the right branch behind γc(9/56),

while 0 is mapped to the critical value c in the left branch of Kc behind γc(9/56).

Thus this principle shows that looking from αc , the first arm is pointing to the right

and the second arm to the left. This structure extends immediately to all dynamic

frames, and to all parameter frames in the left branch. The orientation is reversed

for parameters in the right branch, cf. Figure 7.1.

c1

c2

c1

c2

Figure 7.3: The largest frames on the edges of orders 5 and 6 that are attached to the
edge of order 4 at its upper vertex (cf. Figure 8.3). Observe that there are two additional
arms of length comparable to the arms at the vertices, which are missing in the frames on
the edge of order 4, cf. Figure 7.5. Note that in the present figure the parts of M before
c1 and behind c2 are cut away, while the corresponding parts are shown in Figure 7.5.

Now consider a maximal parameter edge EM in the left branch: for all c ∈ EM the

structure of F1
c between the first vertex and 0 mirrors the structure of Kc between

γc(9/56) and c, i.e the number of long arms pointing to the right or left is the same.

Now that structure of Kc is the same as the structure of M1/3 , and the parameter

frames in EM share any structure that is common to all dynamic frames for c ∈ EM ,

thus we arrive at the following statement: for any maximal parameter frame FM

in EM , there is a monotonous 1:1 correspondence between the arms turning left or

right at maximal vertices before FM , and certain arms turning left or right within the

frame, before the root. Behind the tuned copy of M the same pattern is repeated

in reversed orientation, i.e. the qualitative structure is invariant under a rotation by

π. See the examples in Figure 7.3. The orientation of the first arm is a special case

of this statement. Now of course there is an infinity of small arms turning left or

right, but the special arms considered here are interesting for several reasons: they

correspond to relatively large periods and large intervals of angles, and typically

they are much longer then the other arms. They explain to which maximal edge

of Kc the iterate fn
c (c) belongs, depending on the position of c within a parameter

frame of order n. And the part of FM between two arms is a parameter edge again,

containing a full hierarchy of mutually homeomorphic subframes.

Now we turn to the discussion of certain “small” arms, at first only for the parameter
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edge EM of order 4. In the top of Figure 7.4 a maximal parameter frame FM ⊂ EM

of order m is indicated. For parameters c before, within or behind FM , the critical

value c is before, within or behind the dynamic frame Fc of order m, that has

the same indices as FM . We exclude the case that c belongs to an arm of FM .

Consider the preimage of Fc under fc in F1
c , or the preimage of Fc under fn

c in any

dynamic frame of order n: if c is before FM (and Fc), the preimage consists of two

disjoint dynamic frames in the “horizontal” part of F1
c , and if c is behind FM , the

preimage consists of two dynamic frames in the “vertical” part of F1
c . For c ∈ FM ,

the preimage of Fc in F1
c is a connected set that is mapped 2:1 onto Fc , thus this

preimage does not consist of two frames. Now consider another maximal parameter

frame F ′
M of order n and the corresponding dynamic frames F ′

c for c ∈ F ′
M . By the

above results and the correspondence from Definition 7.2, F ′
M contains two smaller

parameter frames, such that the corresponding dynamic frames are mapped to Fc

by fn
c . These subframes of F ′

M are located in the “horizontal” or “vertical” part of

F ′
M , according to whether FM is before or behind F ′

M . This construction of smaller

parameter frames yields the frames Fn, m
M for Proposition 8.5. A good intuition for

the bifurcations of subframes is the following one: as c moves from a to b, the vertices

of frames are pulled apart and subframes in the arms corresponding to sublimbs of

denominator 3 are moved to the middle, exchange their external angles, and two

new subframes are moving towards the vertices.
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6

c
6

c
6

c

Figure 7.4: Bifurcations of subframes in Fc
1(1, 0) or in any dynamic frame, as the param-

eter c varies in the edge EM of order 4. In the first and third case, there are corresponding
parameter subframes.

Now FM shall be the parameter frame of order 4 in the edge EM of order 4, and we

consider parameters c ∈ FM between the vertices, not in the arms. The discussion

will be complicated by additional bifurcations, so we shall first consider the case

of c = c0 , the center of period 4. Fc0 contains an infinite number of decorations

attached to the Fatou component containing c0 . Each of these decorations contains

a sequence of edges approaching the component, with a small arm pointing to the left

at the common vertices. Behind the edge that is the first in the sequence and the last

as seen from c0 , two branches are attached, which are mapped to the branches behind
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γc0(23/112) by a suitable iterate of fc0 . None of the preimages of αc0 occurring

in this description is ever iterated behind itself, thus these structures remain the

same for all parameters c behind the root of M4 , and there are corresponding

structures in the parameter plane: to each tuned copy of a β-type Misiurewicz point

in ∂M4 a decoration is attached, which consists of a sequence of parameter edges

accumulating at the point of attachment, with arms pointing to the left as seen from

M4 , and with two branches at the other end, cf. Figure 7.5. These decorations will

not be mutually homeomorphic, since the edges in the 1/4-sublimb of the period-4

component, e.g. in the decoration at c0 ∗γM(1/8), contain Misiurewicz points with 4

branches separating the vertices. Moreover, sublimbs of equal denominators are not

mutually homeomorphic by orientation-preserving homeomorphisms (in contrast to

limbs). At least there is no known construction by surgery, but a more abstract

construction might be possible.

c1

c2

J
J

J
Ĵ

Figure 7.5: Left: the parameter frame F4
M containing the tuned copy M4 , plus parts

of M before the vertex c1 and behind the vertex c2 . Right: M4 and some decorations.
The decorations at the tuned β-type Misiurewicz points of orders 2 and 3 have been cut
off and shifted, the other decorations have been cut away. The detail in the bottom right
corner shows an edge in the decoration attached to c0 ∗ γM(1/8). See also Section 4.3.

The situation before the root of M4 is more involved. Again we obtain a sequence

of parameter edges accumulating at the root, with arms pointing to the left as

seen from the root, to the right as seen from the lower vertex. The construction

of these edges is done recursively, since for a parameter in one of these edges, the

corresponding dynamic edge exists but not all edges behind it. Moreover these edges

have the property that the upper vertex is mapped to the lower one. For c behind

the root of M4 , the small edges are obtained from the expanding dynamics of f 4
c

at the characteristic 4-periodic point. For c before the root, there is a spiraling

dynamics at the two 4-periodic points, that is related to the parabolic implosion.

If we consider a maximal frame FM of order 6= 4, some of the edges constructed

here (in the decorations or before the root) are replaced with ”pseudo-edges”: the

corresponding subset of Kc is iterated to a connected component of E1
c \ F ′

c , where

the dynamic frame F ′
c is maximal in E1

c but different from F1
c . The frames on a

pseudo-edge form a subset of a hierarchy but not a full hierarchy, and their indices
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are obtained recursively. Finally let us consider a maximal parameter edge behind

that of order 4. Then we have both large arms corresponding to branches, and

small arms related to subedges. In Section 8.3 we shall construct homeomorphisms

between different edges, e.g. some frames in E5
M are mapped to frames in E4

M . Then

certain large arms are mapped to small arms, and not every subframe is mapped

to a subframe. It is an open question if the edges or pseudo-edges accumulating at

a root are mutually homeomorphic, and if all parameter frames in the left branch

are homeomorphic, when those sublimbs are excluded, but subframes in arms are

included in the discussion. The homeomorphisms from Section 8.3 show in addition

that the arms at the vertices of maximal frames are homeomorphic to the left branch

of M1/3 . There might be a model of the left branch of M1/3 that is constructed

iteratively as a projective limit space, an “iterated function system”.

7.4 Different Limbs

The concepts of edges and frames shall be extended from M1/3 to an arbitrary limb

Mp/q . The filled-in Julia set has q branches at the fixed point αc and the combi-

natorial rotation number is p/q. The dynamic edge E1
c is the connected component

of Kc \ {αc, −αc} between ±αc . Now a connected set Ec is a dynamic edge of or-

der n, if it is mapped onto E1
c by fn−1

c , and fn−1
c is injective in a strip around the

edge, i.e. in a neighborhood of the edge without its vertices. The four bounding

external angles are defined analogously to Section 6.1, and a formula analogous to

(6.1) is obtained from the fact that 2n [φ±, ψ±] − w± is the interval between the

characteristic angles of Mp/q , i.e. the angles of the root, or of the puzzle-piece 1.

Parameter edges are defined by their correspondence to dynamic edges, and there

is an analog to Proposition 6.3, in particular a parameter edge of order n contains

a unique center of period n. The maximal dynamic edges or parameter edges form

a graph with q edges at every vertex, and the exceptional set is a Cantor set.

The principal Misiurewicz point A = cq ∗ (−2) is the α-type Misiurewicz point

of preperiod q in Mp/q . For parameters c strictly behind A, each dynamic edge

contains a hierarchy of dynamic frames, and each parameter edge behind A contains

a hierarchy of parameter frames. Now the orders are increased by q in every level of

the hierarchy, i.e. an edge of order n contains one frame of order n, two of order n+q,

four of order n+ 2q, . . . (and these will contain smaller frames), and the exceptional

set between the frames is contained in a Cantor set. Here the dynamic frame F1
c

is the preimage of the q branches behind the preperiodic point corresponding to

A, and its connected injective preimages under fn−1
c form dynamic frames of order

n. Parameter frames are defined by correspondence. There are q branches at each

of the two vertices of a frame, with q − 2 arms at the sides of the edge, and the

bounding angles θ±1 , . . . , θ
±
q are described in terms of three integer indices n, u−, u+

analogously to (7.1). The qualitative structure of frames is obtained as in Section 7.3,

in particular the arms of a parameter frame before the largest tuned copy mirror
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the location of edges before the frame, or the location of the frame within the limb.

See the example in Figure 7.6.

For parameters c in the 1/2-subwake of the period-q component, there is a pinching

q-periodic point zc in E1
c , it is the pre-characteristic point corresponding to the root

B of period 2q bifurcating from period q. Define jc : E1
c → E1

c by jc(z) := f q
c (z) for

z between αc and −zc , and by jc(z) := f−q
c (−z) for z between −zc and −αc . For a

parameter edge EM behind B, a homeomorphism h : EM → EM is constructed from

jc analogously to Section 6.2. If EM is behind A, then h is permuting the frames in

the hierarchy, and a family of homeomorphisms shows that maximal frames on the

same edge are mutually homeomorphic.

8

6

9

7

8

6

9

7

Figure 7.6: The limbM2/5 and the parameter frames of lowest orders in the four branches
behind the principal Misiurewicz point A. The Julia set KA is shown in the bottom right
corner.

There is only one result for M1/3 that has no direct generalization, namely items 2–4

of Theorem 6.6. The maximal edges (neglecting the trunk) in M1/2 are mutually

homeomorphic, and in M1/3 there are two families of mutually homeomorphic max-

imal edges, which belong to the left and right branch behind A. For q ≥ 4 there

are maximal edges in the same branch which are not mutually homeomorphic by

orientation-preserving homeomorphisms, and there are more than q families of mu-

tually homeomorphic edges, which are not classified yet. More precisely, there is

no orientation-preserving homeomorphism known that maps a maximal edge in the

left branch to a maximal edge in the right branch of M1/3 , but it is not proved

that these sets are not homeomorphic (preserving the orientation). According to

Figure 7.6, there is no orientation-preserving homeomorphism between the edge of

order 6 or 9 and the edge of order 8 or 7: at the branch points separating the vertices

from each other, the arms are on both sides in the first case, and on one side in the

other case. This observation can be proved combinatorially.

The maximal parameter edges in M1/2 are symmetric with respect to the real axis,

there is a unique maximal edge of order 3, 4, 5, . . .. On an edge of order n there

is one parameter frame of order n, two of order n + 2, four of order n + 4, . . . ;

the maximal frames are symmetric to the real axis, and there are no arms attached

to the vertices of frames. We are interested in the combinatorics of real quadratic

polynomials. The hyperbolic intervals are ordered by the relation≺ from Section 3.4,
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such that c1 ≺ c2 ⇔ c2 < c1 . As the real parameter c moves from 1/4 to −2, new

real cycles are created at the roots of hyperbolic intervals, and they remain real

behind these roots. Thus for a given parameter c, every primitive root of period p

before c corresponds to two cycles of fc with period p, and every non-primitive root

corresponds to one cycle. A more important correspondence is given by the notion

of characteristic periodic points: every repelling cycle of ray period p contains a

unique characteristic point, which is the leftmost one in the cycle. It corresponds to

a unique hyperbolic interval before (or containing) c, and that interval is primitive

or not, iff the period of the cycle is p or p/2. Consider the ordering of integers

(1 � 2 � 22 � 23 � . . .) � . . . � (. . .� 7 · 22 � 5 · 22 � 3 · 22)

� (. . .� 7 · 2 � 5 · 2 � 3 · 2) � (. . .� 7 � 5 � 3) .

Šarkovskii [Sa] has shown that a quadratic polynomial (or more general mapping)

with a real p-cycle must have a q-cycle as well for every q � p, the usual proofs

employ some kind of orbit forcing. By the remark of the above, the statement is

equivalent to the following one for the parameter line: if c is a center of period p

and q � p, then there is a center of period q before c. It is sufficient to prove this

statement for the odd periods . . .�7�5�3, since the more general statement follows

from tuning. Now these centers are obtained in various ways in the context of the

Mandelbrot set, e.g. by finding their external angles explicitly, by noting that they

belong to maximal frames in the edge of order 3, or from the scaling properties at

the principal Misiurewicz point γM(5/12) according to Proposition 3.10. Šarkovskii’s

Theorem implies the following result: when p is not a power of 2 and fc has a p-

cycle, then it has infinitely many repelling cycles. (The special case of p = 3 was

rediscovered by Li and Yorke.) We shall classify some well-known results on the

qualitative location of centers as follows:

• Statements that do not allow to obtain the qualitative location of all hyperbolic

intervals but provide a partial description, e.g. the real version of Lavaurs’

Lemma that there is a center of lower period between two centers of equal

periods, or Šarkovskii’s Theorem, or its refinement in terms of over-rotation

numbers [BkM].

• Algorithms for obtaining the qualitative location of all centers up to a given

period, such that many of these centers must be determined even when one is

interested only in a few of them: e.g. one can consider all kneading sequences

or internal addresses up to the given period, and check in each case if that

combinatorics is realized on the real line. Or one can compute the relations

∼ and ≺ from Lavaurs’ algorithm, and keep track of the real centers obtained

among the complex ones. Finally one can employ the fact that all cycles have

become real for c = −2 and consider all angles of period p under doubling,

group them to cycles, and group θ and 1−θ together if they belong to different

cycles. Then the external angles at real roots of period p are obtained by taking

the largest angle in [0, 1/2) for each cycle or pair of cycles.
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• We are interested in methods combining the benefits of these two items; these

methods shall at the same time produce centers algorithmically, and provide

relations between centers that allow to determine the location of individual

centers by computing only a few other centers. The method of combining

kneading sequences from [Mst] seems to be at least a partial solution.

It is a project of current research to describe the qualitative location of real centers

in terms of edges and frames. Here we will consider only maximal tuned copies of

M (maximal “windows within frames”), since the location of all centers is obtained

from the location of these maximal centers by tuning. Now every maximal tuned

copy of period p belongs to a unique frame of order p, and all frames are obtained

by iterating the discussion of subframes within frames from the previous section.

7.5 Composition of Homeomorphisms

and Tuning

Recall the Branner–Douady Homeomorphism ΦA : M1/2 → T ⊂ M1/3 from Sec-

tion 4.5. Consider a maximal parameter edge En
M of order n ≥ 3 in M1/2 . Then

there is a maximal parameter edge En+1
M of order n + 1 in the left branch of M1/3 ,

such that ΦA(En
M) = En+1

M ∩ T . A maximal parameter frame FM ⊂ En
M of order

n + 2k, on the k-th level of the hierarchy, is mapped to the intersection of T with

a maximal parameter frame F ′
M ⊂ En+1

M of order n + 1 + 3k, again on the k-th

level of the hierarchy. These statements are checked easily from the Hubbard trees.

Now consider homeomorphisms on edges, hn : EM → EM and hn+1 : En+1
M → En+1

M

according to Sections 7.4 and 6.2. Then the restriction hn+1 : En+1
M ∩T → En+1

M ∩T
is a homeomorphism again, and we have hn+1 ◦ ΦA = ΦA ◦ hn on En

M . These com-

positions are obtained by performing the surgery for the second piecewise-defined

quadratic-like mapping, and expressing the polynomial by its conjugation to the

first piecewise-defined mapping, as in the proof of h̃ ◦ h = id in Section 5.5. Note

that this idea can also be used to obtain new homeomorphisms, e.g. if we already

know hn : EM → EM and define hn+1 : En+1
M ∩ T → En+1

M ∩ T by ΦA ◦ hn ◦ Φ−1
A , then

we see the construction of a piecewise defined mapping g(1)
c yielding this homeomor-

phism, and note that it is possible for all c ∈ En+1
M , yielding the homeomorphism

hn+1 : En+1
M → En+1

M . The same is true e.g. for homeomorphisms at Misiurewicz

points, and it can be used to obtain homeomorphisms at certain endpoints, see also

item 4 of Remark 8.2. Similar statements hold for the Branner–Fagella homeomor-

phisms Φq
pp′ : Mp/q → Mp′/q between limbs of equal denominators. Again these

are mapping maximal and non-maximal edges and frames to the corresponding ob-

jects, and their composition with homeomorphisms on edges or homeomorphisms at

Misiurewicz points yields known or new homeomorphisms; in these cases it is not

necessary to extend the mapping to certain decorations. Note also that Φ3
12 ◦ ΦA

yields a homeomorphism M1/2 → T ′ ⊂ M2/3 and an arc from 0 to the 2-periodic

Misiurewicz point −i = γM(5/6).
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According to Section 5.6.5 we have h(c0 ∗x) = h(c0)∗x for all x ∈M and all centers

c0 ∈ EM , when h : EM → EM is a homeomorphism according to Theorem 5.4. Now

we want to explore a different connection between tuning and our homeomorphisms:

consider the usual homeomorphism h : EM → EM on a parameter edge EM ⊂M1/3 ,

and a center cp of period p > 1. A mapping h′ : cp ∗ EM → cp ∗ EM is obtained by

composition, such that h′(cp ∗x) := cp ∗ (h(x)) for all x ∈ EM . Define E ′M as the com-

pact connected full set, which is obtained by disconnecting M at the tuned copies

of the vertices of EM , and taking the component containing cp ∗EM . Now E ′M consists

of cp ∗ EM and a countable family of decorations, which are attached to the tuned

images of β-type Misiurewicz points in EM . We claim that h′ extends in a natural

way to a homeomorphism E ′M → E ′M : the construction of the piecewise defined map-

ping g(1)
c for h is transfered to parameters in E ′M , where we iterate 3p times instead

of 3 times in the definition of the mapping corresponding to jc . The surgery is done

around the little Julia set containing the critical value or the critical point. The first

choice follows Section 4.3, here the relevant external angles are the same as in the

parameter plane. The second choice has the advantage that the reflection z 7→ −z is

transfered more easily. Now this construction of a quadratic-like mapping is possible

in the same way not only for c ∈ cp ∗ EM but for all c ∈ E ′M , since we do not iterate

forward on the strip containing the critical point, thus the decorations are mapped

to corresponding decorations without further considerations, and h′ : E ′M → E ′M is

obtained from Theorem 5.4. Two examples are given in Figure 7.7, and further ex-

amples are given in item 5 of Remark 8.2 and in the proof of Theorem 8.1. Note that

h′ is compatible with tuning by centers in E ′M but not with tuning by cp , since it is

not the identity on cp ∗EM , cf. item 2 of Remark 9.6. We may also define generalized

edges behind the tuned region, e.g around the center of period 5 behind c2 ∗M1/3 ,

since the construction of jc remains valid. The most general notion of edges would

be obtained as follows: behind any center cp , E1
c is the part of Kc between the tuned

images of ±β, and jc is well-defined in the 1/2-sublimb.

Figure 7.7: Left: the 1/3-sublimb of Ω2 , containing the tuned copies c2 ∗ M1/3 and
c2 ∗ E4

M . Middle: c2 ∗ E4
M with its decorations, the decorated tuned frames are mutually

homeomorphic. Right: decorated frames in c3 ∗E3
M ⊂ c3 ∗M1/2 ⊂M1/3 , they are mapped

to each other by h′, which is obtained from h on the edge of order 3 in M1/2 .
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8 Repelling Dynamics at

Misiurewicz Points

The homeomorphisms constructed so far are related to parameter edges. They

are qualitatively expanding or contracting at the vertices. Now we shall construct

homeomorphisms starting from this perspective, i.e. a Misiurewicz point a is given

and we ask for a homeomorphism defined in a neighborhood and expanding at a. Tan

Lei’s asymptotic self-similarity and its relation to the homeomorphisms is discussed

for an example, and extended to multiple scales.

8.1 Expanding Homeomorphisms

at Misiurewicz Points

Suppose that a homeomorphism h : EM → ẼM is constructed by surgery according

to Condition 1.1, and that a Misiurewicz point a ∈ EM ∩ ẼM is fixed by h. Now k

shall be the preperiod, p the period and rp the ray period of a, and ρa denotes the

multiplier of the associated repelling p-cycle of fa . Suppose that h is constructed

from g(1)
c = fc ◦ ηc according to Chapter 5, and that ηc = f−m

c ◦ f rp
c ◦ fm

c in a

neighborhood of the preperiodic point corresponding to a, with m ≥ k. Exactly

one local branch A of M at a is contained in EM and ẼM , and h is qualitatively

expanding on A at a, i.e. h−n(c) → a for c ∈ A (assuming that A is the intersection

of a global branch with a sufficiently small neighborhood of a). We shall say that

there is a repelling dynamics on M at a, if a mapping ηc of the form above exists

for every local branch and defines a homeomorphism h there.

Now ρn
a(M−a), n→∞, converges in Hausdorff-Chabauty distance to a set Ya , the

asymptotic model of M at a, and ρrj
a (A− a), j → ∞, converges to a branch of Ya

at 0 (which is invariant under multiplication with ρr
a). There are several relations of

expanding homeomorphisms to the asymptotic scaling behavior of M at a according

to Proposition 3.10, see also the discussion of an example in Section 8.5:

• Both results rely on the repelling dynamics of fc(z) on Kc , for c in a neigh-

borhood of a and z in a neighborhood of the repelling p-cycle.

• There is a sequence of pinching points cj , j ∈ N0 , converging to a on A, such

that ρrj
a (cj − a) has a non-zero limit for j →∞, and such that h(cj+1) = cj .
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• Define a sequence of subsets (Sj) of A by disconnecting M at the points (cj):

Sj shall consist of the connected component of M\ {cj+1, cj} between these

two points, with cj+1 included and cj excluded. These sets form fundamental

domains for h at a, i.e. h(Sj+1) = Sj . On the other hand, ρrj
a (Sj−a) converges

to a subset S ⊂ Ya , which is a fundamental domain for the scaling of a global

branch of Ya by ρr
a . Thus ρrj

a (h−j(S0)−a) converges to S in Hausdorff distance.

In the dynamic plane of fa , ρrj
a (η−j

a (z) − a) converges to a homeomorphism from

a local branch of Ka onto a local branch of its asymptotic model Za . Now Ya has

empty interior in contrast to A, but one could guess from the second and third item

that ρrj
a (h−j(c) − a) converges to a mapping from A onto a local arm of Ya , thus

h would be complex differentiable at c = a with h′(a) = ρr
a . But we will see in

Section 8.5 that this is wrong, and in this sense the expanding property of h is only

a qualitative one.

Theorem 8.1 (α- and β-Type Misiurewicz Points)

1. For every β-type Misiurewicz point a ∈ M, there is a subset EM ⊂ M and a

homeomorphism h : EM → EM with expanding dynamics at a.

2. For every α-type Misiurewicz point a ∈M and every small local branch A of M
at a, there is a set EM with A ⊂ EM ⊂M and a homeomorphism h : EM → EM with

expanding dynamics at a on A.

In both cases, h enjoys all the properties from Theorem 5.4, in particular it is analytic

in the interior of EM , and it has an extension to a neighborhood, which is quasi-

conformal in the exterior.

The homeomorphisms are constructed in Section 8.2, by employing narrow hyper-

bolic components in the first case. In both cases we only need a combinatorial

construction for g(1)
c = fc ◦ ηc according to Section 5.1, and Theorem 5.4 yields the

homeomorphism h. We will consider ηc = f−m
c ◦ jc ◦ fm

c in a neighborhood of the

preperiodic point corresponding to a, with jc = f r
c in a neighborhood of the associ-

ated fixed point. Now every α-type Misiurewicz point is a tuned β-type Misiurewicz

point or behind one, and the construction for the α-case is obtained from the β-case

by tuning, analogously to Section 7.5.

In many cases, homeomorphisms at α-type Misiurewicz points are obtained from

homeomorphisms on edges, cf. item 3 of the following remark. After the author had

announced this special case of item 2, he was informed of independent previous work

by Dierk Schleicher, who had obtained homeomorphisms at Misiurewicz points by

employing the repelling dynamics of fc , and who suggested the notion of “repelling

dynamics in the parameter plane”. Unfortunately we do not know what Schleicher’s

mappings looked like, to which types of Misiurewicz points they applied, and if they

satisfied Condition 1.1. Schleicher’s claim motivated our research for Theorem 8.1.

(In fact the author tried for some time to prove that item 1 was wrong, because he

believed that a homeomorphism cannot move vertices of maximal edges.)
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Remark 8.2 (Generalizations)

1. By piecing together homeomorphisms h1, . . . , hq on all local branches at an

α-type Misiurewicz point a ∈ Mp/q , we obtain a homeomorphism h that is quali-

tatively expanding on a neighborhood of a in M. If h1, . . . , hq are extended to the

exterior by Theorem 5.4, such that Condition 5.5 is satisfied, then the extensions

match on the q parameter rays landing at a, thus h is extended to a neighborhood

of a in C, and the extended mapping is quasi-conformal in the exterior of M. Alter-

natively a mapping h′ can be obtained from a single surgery involving many pieces

simultaneously. It will coincide with h on a sequence (cn) spiraling towards a, but

it will be different on other subsets of the local arms.

2. Assume that g(1)
c = fc ◦ ηc , where ηc is the identity on Kc except in a small

neighborhood of −αc , and it is defined for all c behind some pinching point of Mp/q .

This construction will lead to a homeomorphism having some kind of expanding or

contracting dynamics at many α-type Misiurewicz points a simultaneously, but the

asymptotic scaling factor (on (cn) of the above) will be any power of ρq
a , depending

on how often the orbit of a visits those regions of Ka , where ηa is expanding or

contracting.

3. Denote by A the principal Misiurewicz point of the limb Mp/q (the tuned image

cp/q ∗ (−2), γM(9/56) in the case of M1/3), and by B the root of the period-2q

component bifurcating from period q (γM(10/63) in the case of M1/3). If a is a

vertex of an edge EM behind B, a homeomorphism according to Theorem 6.4 or

Section 7.4 yields repelling dynamics on a corresponding local branch. If a is behind

A, every small local branch is contained in a suitable parameter edge: some iterate of

fa maps a small neighborhood of z = a 1:1 to a small neighborhood of αa , such that

this finite family of iterates is pairwise disjoint. The neighborhood of αa contains

arbitrarily small edges having αa as a vertex, since there is an edge of order q + 1

contained in E1
a having αa as a vertex, and certain preimages under fa are edges

with one vertex at αa and diameter tending to 0. Thus there is a small dynamic

edge Ea having a as a vertex, which is iterated injectively to a small edge at αa and

from there to E1
a . By item 7 of Proposition 6.3, there is a corresponding parameter

edge EM at a, containing the given small local branch. Now Theorem 6.4 yields

expanding dynamics on all local branches whenever a is behind A. The proof of

Theorem 8.1 in Section 8.2 will use a different construction, which does not rely on

the notion of edges, and which works everywhere. In general the domains of these

homeomorphisms will be smaller than available edges.

4. Homeomorphisms at endpoints, i.e. Misiurewicz points with one external angle,

are again compatible with various other homeomorphisms, cf. the discussion of ho-

meomorphisms on edges in Section 7.5, and we shall mention some examples, tacitly

extending some mappings by the identity to other parts of M: if h is expanding at

a β-type Misiurewicz point in Mp/q and Φq
pp′ : Mp/q →Mp′/q is a Branner–Fagella

homeomorphism, then Φq
pp′ ◦ h ◦ (Φq

pp′)
−1 : Mp′/q →Mp′/q is expanding at an end-

point of period > 1. In particular, repelling dynamics at γM(1/4) are transferred to

repelling dynamics at γM(5/6) = −i, another example is mentioned in Section 8.3.

125



If h is expanding at −2 = γM(1/2) and ΦA : M1/2 → T ⊂ M1/3 is the Branner–

Douady homeomorphism, then h′ := ΦA ◦h◦Φ−1
A : T → T is expanding at γM(1/4),

at first only on a subset of T . But we may in fact look at the surgery for h in

the dynamic plane, and obtain a new surgery for h′, which works not only for c

from a neighborhood of γM(1/4) in T but on a neighborhood in M1/3 . In the first

example, we may either use this approach of obtaining a new surgery, or stay with

the composition of homeomorphisms.

5. Presumably Theorem 8.1 generalizes to all Misiurewicz points a, i.e. to periods

p > 1. In some cases the mappings jc can be found from known constructions

by tuning: if a has more than one external angle, then a is behind a Misiurewicz

point a′, which is a copy of a β-type Misiurewicz point under the tuning map for

the appropriate center of period p, such that a and a′ are associated to the same

repelling cycle. Now tuning yields expanding dynamics on a small local branch at

a′, and the construction of jc shall remain valid for a, but the construction of ηc will

not work on every branch at a or a′, if the p-tuned copy of M is primitive.

8.2 α- and β-Type Misiurewicz Points

Suppose that a is a β-type Misiurewicz point of order k. For c in a neighborhood of a,

a neighborhood of the preperiodic point β∗ corresponding to a is mapped injectively

to a neighborhood of βc by fk
c . If there is a mapping jc defined by iterates of fc ,

such that jc = fc in a neighborhood of βc and such that it extends to the identity

on Kc , then ηc := f−m
c ◦ jc ◦ fm

c yields a homeomorphism h with repelling dynamics

at a. Special constructions for jc will be considered in Section 8.3, but here we shall

give a general construction relying on narrow hyperbolic components.

Suppose that Ω is a hyperbolic component of period n > 1, with root cn and

external angles θ± = u±/(2
n− 1). It is called narrow [LaS], if there is no hyperbolic

component of period ≤ n behind Ω, or equivalently, if u+−u− = 1. Then Ω is either

primitive or bifurcating from the main cardioid. For parameters c ∈ M behind cn ,

the critical value c is behind the characteristic periodic point w1 corresponding to

cn , and the critical point 0 is between w0 and −w0 , where w0 = fn−1
c (w1) is the

pre-characteristic point (Section 3.4). Since Ω is narrow, fn−1
c maps the part of Kc

behind w1 injectively onto a part not containing w1 , thus w0 is between αc and

0, and −w0 is between 0 and −αc . This implies that u− is odd and u+ is even.

Considering external angles shows that there is a unique hyperbolic component of

period n+ 1 behind Ω, it is narrow and primitive.

Lemma 8.3 (Construction Behind Narrow Hyperbolic Components)

Suppose that n > 1, cn is the root of a narrow hyperbolic component of period n,

and cn+1 is the root of period n + 1 behind cn . For every β-type Misiurewicz point

a behind cn+1 , there is a homeomorphism h with expanding dynamics at a. The

construction of jc is the same for all a behind cn+1 , it relies on the characteristic

periodic points corresponding to cn and cn+1 .
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Proof of Lemma 8.3:

Consider parameters c behind cn+1 . Denote the characteristic n-periodic point cor-

responding to cn by w1 , and the characteristic (n+ 1)-periodic point corresponding

to cn+1 by z1 . We omit the dependence on c in the notation. The orbits are denoted

by (wi) and (zi), with the pre-characteristic points w0 = wn and z0 = zn+1 . Now Kc

has two branches at every zi , and two branches at every wi if cn is primitive. If cn is

the root of some limb, than n is the denominator of the limb and equals the number

of branches at αc = w0 = w1 . In any case we have αc � w0 � z0 � 0, cf. Figure 8.1.

Both orbits are stable for c behind cn+1 , i.e. the points depend analytically on c and

their external angles do not bifurcate.

Sc shall be the connected part of Kc between w0 and z0 , i.e. the closure of the

appropriate connected component of Kc \ {w0, z0}. Now fn
c is injective on Sc :

otherwise there would be a minimal i with 1 ≤ i ≤ n − 1 and 0 ∈ f i
c(Sc). Since

w0 and z0 are pre-characteristic, the connected component of Kc between w0 and

−z0 or between z0 and −w0 would be contained in f i
c(Sc), and fc(Sc) ⊂ f i+1

c (Sc),

contradicting the fact that fc(Sc) does not contain a periodic point of period ≤ n−1.

Thus fn
c maps Sc injectively to the connected part between w0 = wn and zn . Since

z0 = fc(zn) is between ±αc , zn is either between −βc and αc or between −αc and βc .

The second statement is true, since the ray period of w0 is n. Consider the closed

branch of Kc before w0 , i.e. the closure of the connected component of Kc \ {w0}
containing 0, −αc and βc . It is mapped onto itself by a mapping jc fixing w0 and

βc , which is given by jc := f−n
c := (fn

c |Sc
)−1 between w0 and zn , and by jc := fc

behind zn .
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Figure 8.1: The set EM behind b in the parameter plane, periodic orbits on Kc , and the
construction of subsets and mappings for the proof of Lemma 8.3.

fc is mapping the branch behind −αc containing βc injectively onto the branch

before αc , and there is a unique sequence (w−l), l ∈ N, such that fc(w−l) = w−(l−1)

for l ∈ N, and w−l is between w−(l−1) and βc . Now consider a β-type Misiurewicz

point a of order k behind cn+1 . For the moment we shall consider c = a, thus
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a is a preimage of βa of exact order k. A small neighborhood U of a is mapped

injectively to a neighborhood of βa by fk
a , such that f i

a(U) is disjoint from U for

1 ≤ i ≤ k. There is an l ∈ N0 with w−l ∈ fk
a (U), more precisely we require that

the part of Ka \ {w−l} containing βa belongs to fk
a (U). Set m := k + l and consider

the unique pinching point w∗ ∈ U with fk
a (w∗) = w−l . It satisfies fm

a (w∗) = w0 ,

and a is behind w∗ . The part Ea behind w∗ containing a is mapped injectively

onto the part before w0 by fm
a , and f i

a(Ea) is disjoint from Ea for 1 ≤ i ≤ m. By

choosing l sufficiently large, we may assume that m > n. Then w∗ is behind z1 ,

since the smallest period in Ea is m+ 1 > n+ 1. There are unique points z̃∗, z∗ ∈ Ea

with fm
a (z̃∗) = z0 and fm

a (z∗) = zn . Now w∗ is not iterated behind itself, and

item 4 of Proposition 3.14 shows that there is a Misiurewicz point b with the same

external angles as w∗ . Denote the preimage of βc corresponding to a by β∗ , then

β∗ � z∗ � z̃∗ � w∗ � z1 � w1 � αc and these points are well-defined and stable for

all c ∈ EM . Here EM is the part of M behind b containing a, corresponding to the

part Ec of Kc behind w∗ that is containing β∗ .

The subwake Pc of w∗ containing β∗ is decomposed into a strip Wc and a sector

Vc by the two external rays landing at z∗ , and decomposed into a strip W̃c and a

sector Ṽc by the two external rays landing at z̃∗ . These sets satisfy Assumption B

of Section 5.1. The first-return numbers are kv = m + 2, kw = m + 1 = k̃v and

k̃w = m + n + 1. Now Definition 5.1 applies to ηc := f−m
c ◦ jc ◦ fm

c on Pc and

ηc := id otherwise. We have ηc = f−m
c ◦ fc ◦ fm

c = f−(k−1)
c ◦ (−fk

c ) : Vc → Ṽc and

ηc = f−m
c ◦f−n

c ◦fm
c = f−l̃w

c ◦(−f lw
c ) : Wc → W̃c for suitable lw, l̃w . By Theorem 5.4,

the straightening of gc related to g(1)
c = fc◦ηc defines a homeomorphism h : EM → EM

with expanding dynamics at a and contracting dynamics at b. It increases the

periods of hyperbolic components at most by m+n+1
m+1

, and it reduces periods at

most by a factor of m+1
m+2

.

We have chosen m > n. If m < n then g(1)
c will not be expanding and there is

no construction of gc . Theorem 5.4 does not apply in the case of m = n, but

a homeomorphism h : EM → ẼM can be constructed nevertheless. Now we have

z̃∗ = z1 , thus β∗ � z∗ � z̃∗ = z1 � w∗ � w1 � αc , and these pinching points are not

defined for all parameters c behind the Misiurewicz point b corresponding to w∗ . We

may choose EM as the part of M behind cn+1 , and ẼM is the part behind some root

c2n+1 of period 2n+ 1, with a � cn+1 � c2n+1 � b � cn , since z1 is (2n+ 1)-periodic

under gc . Now h−1 is not obtained from fd ◦ η−1
d , but from a surgery cutting Ed

into three pieces, and employing a (2n + 1)-cycle instead of the (n + 1)-cycle (zi).

Constructions like this one should be covered by a general theorem on surgery, cf. the

discussion in Remark 5.3.

Proof of Theorem 8.1:

1. Suppose that a is a β-type Misiurewicz point of order k. We must show that

there is a root cn of a narrow hyperbolic component of some period n, such that a is

behind the associated root cn+1 , then Lemma 8.3 yields the desired homeomorphism

with expanding dynamics at a. There is a connected sequence of maximal dynamic

edges with increasing order approaching βa . Their preimages under fk
a define a
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sequence of corresponding parameter edges approaching a, and the root of lowest

period in an edge yields a cn .

2. Suppose that a is an α-type Misiurewicz point in the limb Mp/q , and denote

the center of period q by c0 . Since the decorations of c0 ∗M are attached at tuned

β-type Misiurewicz points, there is a unique β-type Misiurewicz point a′′ and an α-

type Misiurewicz point a′ = c0∗a′′, such that a = a′ or a is behind a′. Choose narrow

hyperbolic components with roots cn ≺ cn+1 ≺ a′′ according to item 1. Lemma 8.3

yields a mapping j′′c for c behind cn+1 , which is expanding at βc and given piecewise

by fc and f−n
c . For c′ = c0 ∗ c, Kc′ contains a copy of Kc , such that the copies of

±βc coincide with ±αc′ . Thus we obtain a mapping jc′ , which is expanding on a

local branch of Kc′ at αc′ and given piecewise by f q
c′ and f−nq

c′ , where the relevant

periodic points correspond to c0 ∗ cn and c0 ∗ cn+1 . It is well-defined, since we do not

iterate forward on the strip containing 0, and by the same argument it is defined

not only for c′ in a subset of the tuned copy of M, but for all c′ behind c0 ∗ cn+1 ,

in particular in neighborhoods of a′ and a. Given a branch of M at a, there is a

suitable small local branch EM , such that the corresponding small local branch Ec at

the corresponding preperiodic point in Kc is iterated injectively to the domain of jc
by fm

c for some m > nq, and ηc := f−m
c ◦ jc ◦ fm

c yields the desired homeomorphism

h : EM → EM by Theorem 5.4.

8.3 Further Constructions for Some Endpoints

and Homeomorphisms Between Edges

An endpoint ofM is a Misiurewicz point with one external angle. We shall construct

expanding homeomorphisms at some endpoints a in the left branch of M1/3 , and

these will be used to obtain homeomorphisms between maximal edges. According

to Section 8.1 we need to find a piecewise construction of jc which is expanding at

a corresponding periodic point, then we can set ηc = f−m
c ◦ jc ◦fm

c and g(1)
c = fc ◦ηc ,

and Theorem 5.4 yields the homeomorphism h.

The three examples will employ pinching points of Kc that are preimages of αc and

of the 4-cycle at γc(3/15). Thus the mappings jc will be defined for parameters c

behind the root γM(3/15). The first construction is a special case of Lemma 8.3:

suppose that a = γM(Θ) is a β-type Misiurewicz point of order k behind the root

γM(3/15) of period 4. Construct jc according to Figure 8.1 with n = 3, i.e. w0 =

w1 = w2 = αc and z1 = γc(3/15), z0 = z4 = γM(9/15). Choose m > 3 such that a

neighborhood of γc(Θ) is mapped 1:1 to the part of Kc before αc by fm
c , for all c

in the corresponding neighborhood of a. Then a homeomorphism h with expanding

dynamics at a is obtained according to Section 8.2. The second construction

is a special construction for the β-type Misiurewicz point a1 := γM(1/4), here jc is

constructed in four pieces and ηc = f−3
c ◦jc◦f 3

c , the pieces are sketched in Figure 8.2.

The homeomorphism h is defined on the set EM behind the upper vertex of F4
M , it

will be described qualitatively below.
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jc
→βc

Figure 8.2: The second construction, jc maps the four strips around Kc in the left
image to the four strips in the right image of Kc , we have jc = f−6

c ◦ (−f3
c ), jc = f−6

c ,
jc = f−3

c ◦ (−fc) and jc = fc . The pinching points are preimages of αc and of the repelling
4-cycle that includes γc(3/15). The frame F1

c is seen in the top left.

The third construction deals with Misiurewicz points a of period 2 behind the

root γM(3/15), which are endpoints because they are not in the wake of a period-2

component, the definition of jc is sketched in Figure 8.3. This construction was

obtained by reflecting a construction for β-type Misiurewicz points in the right

branch, which involved the 5-cycle.

γc(2/3)

a1

a2

A′
4

A′′
4

A′
7

F4
M ⊂ E4

E6

E5

E7

E ′6

↓ jc

Figure 8.3: Left: the third construction, jc maps the three strips in the top to the three
strips in the bottom, we have jc = f−4

c (−z), jc = f−3
c ◦ (−f2

c ) and jc = f2
c . The pinching

points are γc(3/30) and preimages of αc . (The image shows a part of Kc for the center c
of period 4.) Right: some edges and arms in the left branch of M1/3 .

Proof of Theorem 6.6, item 2:

First consider maximal edges in the left branch. There are edges accumulating at
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the endpoints which are permuted by the homeomorphisms, this argument yields

at least countable families of mutually homeomorphic edges, but it is not obvious

that all edges are mutually homeomorphic. It is sufficient to show the following

statement: if EM is a maximal parameter edge of order n and the maximal edges E ′M
and E ′′M are attached to its upper vertex c′′ turning left and right, then each of these

two edges is homeomorphic to EM .

In the case of E ′M consider the sequence of maximal edges turning left at every vertex

behind c′′, it converges to the β-type Misiurewicz point a of lowest order behind c′′.

Define h by the first construction of the above with m = n − 1, then h is defined

behind c′, it is mapping both EM and E ′M to subsets of EM . One can check that certain

subedges in E ′M are mapped to subedges in EM , and by item 1 of Proposition 7.7

the edges E ′M and EM are homeomorphic. Recall that this item required a piecewise

construction in a countable number of pieces, it was not obtained from a single

surgery. In the case of n = 4, the first construction does not work because of the

condition m > 3, but the second construction works. Here h is described as follows:

it is expanding at a1 = γM(1/4) and contracting at the upper vertex of F4
M , E ′6 is

mapped to E5 and E7 to E6 . Now E6 is mapped to the arm A′
7 and E5 is mapped

to a subset of E4 . Alternatively we can extend the first construction to the case of

m = 3, then the period 4-component is mapped to the period-7 component before

it, and h can be constructed although Theorem 5.4 does not apply; cf. the discussion

after the proof of Lemma 8.3. This construction maps E6 to A′
4 .

In the case of E ′′M we consider the sequence of edges turning right and converging to a

Misiurewicz point of period 2, and the third construction is applied with m = n−1.

There is no problem for n = 4, since the domain of h is behind the tip c4∗(−2) ofM4 .

Here h is expanding at a2 = γM(5/24), it is mapping E5 and the branches behind it

to the arm A′′
4 , and E6 to the subedge of order 7 between F4

M and γM(23/112).

These two cases together show that all maximal edges in the left branch are mu-

tually homeomorphic, moreover they are homeomorphic to edges in certain arms.

The third construction shows in addition that subedges behind the tip of M4 are

homeomorphic, but there is no result for subedges before the root, cf. the discussion

in Section 7.3. In the case of M1/2 , one homeomorphism analogous to the second

construction is enough to show that all maximal edges behind γM(5/12) are mutu-

ally homeomorphic. When a limb of denominator ≥ 4 is considered, there are not

enough constructions at various kinds of endpoints, or the lower bound on m makes

certain constructions impossible, cf. the discussion in Section 7.4.

The same proof shows that certain edges behind a tight α-type Misiurewicz point

a are mutually homeomorphic, provided that a is behind M4 . If not, there is a

suitable root of period 7, 10, . . . before a, and the first and third construction is

generalized by employing the corresponding cycle instead of the 4-cycle, and by

iterating 6, 9, . . . times around αc instead of 3 times.
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8.4 Scaling Properties of M at a

Consider the principal Misiurewicz point a in M1/3 , which has the external angles

9/56, 11/56 and 15/56. We shall discuss well-known results by Tan Lei and others

regarding the scaling properties of M at a for this example. In the following sections

we will obtain asymptotics for parameter frames, and show that the homeomorphism

h from Theorem 1.2 has a linear scaling behavior at a on a macroscopic level but not

microscopically. We conclude with some remarks on the β-type Misiurewicz point

c = −2 and on the general case, and obtain asymptotic scaling properties of M on

multiple scales.

Julia Sets and Conjugations

The filled-in Julia set Ja = Ka has empty interior, it is locally connected and in

particular pathwise connected. The critical value a satisfies f 3
a (a) = αa . Since αa

has three external angles, a has three and 0 has six external angles. Dynamic frames

have been defined and described in Section 7.1 only for parameters c strictly behind

a. The definition extends to the case of c = a, such that the four arms at 0, i.e. the

branches of Ka at 0 not containing ±αa , together with {0} form the frame F1
a , and

its injective preimages form dynamic frames. The six bounding angles are external

angles of the single vertex, which is a degenerate preimage of αa . The maximal

frames on an edge form the usual hierarchy, but now the exceptional set is dense on

the arc connecting the vertices, and the Cantor set of exceptional angles is mapped

onto the arc by a kind of a “Devil’s Staircase”. The topology of Ka is easily described

recursively: start with the graph of maximal dynamic edges. It contains a hierarchy

of maximal frames, as it is sketched in Figure 8.4. The four arms of a frame again

consist of a graph of edges, which contain hierarchies of frames . . . . The edges of

order 4 in E1
a , and all of their preimages, have at least one vertex with six external

angles.

For parameters c in a neighborhood of a, the fixed point αc is repelling, the multiplier

ρc := f ′c(αc) = 2αc satisfies |ρc| > 1. The Koenigs conjugation φc(z) is defined by

φc(z) := lim
n→∞

ρn
c

(
f−n

c (z)− αc

)
, (8.1)

it is normalized by φc(αc) = 0 and φ′c(αc) = 1, and it conjugates fc to its linear part:

φc(fc(z)) = ρcφc(z) . (8.2)

φc is well-defined and injective in a neighborhood of αc , which is forward invariant

under a branch of f−1
c , and the functional equation shows that φ−1

c extends to an

entire function of finite order. The convergence in (8.1) is locally uniform, thus

φ±1
c (z) is analytic in (c, z). The set Xc is defined as the complete preimage of Kc

under the extended mapping φ−1
c , it is closed and linearly self-similar with scale

ρc , i.e. completely invariant under multiplication with ρc , and φ−1
c : Xc → Kc is a
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branched covering. It is a nice exercise to figure out the location of the critical points

in the case of c = a. The set Xc around 0 is a conformal image of Kc around αc , thus

it has three branches at 0 for c ∈M, which are invariant under a multiplication with

ρ3
c , and Xa has empty interior. By the definition of φc we have ρn

c (Kc−αc) → Xc in

Hausdorff-Chabauty distance (defined below), therefore Xc is called the asymptotic

model of Kc at αc .

a

αa

J
J

J
J





















J
J

J
J
















J

J
J

J
J

J
JJ

Figure 8.4: a is the principal Misiurewicz point of the limb M1/3 , which has the external
angles 9/56, 11/56 and 15/56. Left: the Julia set Ka . Right: a large-scale magnification of
Ka around αa , the asymptotic model Xa looks the same. Bottom: sketch of the hierarchy
of star-shaped dynamic frames Fm

a (u−, u+) on an edge En
a (w−, w+) of Ka , there is one

frame of order m+ 3 between two consecutive frames of orders ≤ m.

We shall now fix certain domains: ∆ is a neighborhood of a in the parameter plane,

bounded by parts of suitable equipotential lines and the ends of six parameter rays

landing at three pinching points, for the angles 10/63, 83/504, 97/504, 103/504,

131/504 and 17/63. For c ∈ ∆, the parameter is in the 1/2-subwake of the period-3

component, and there is a 3-cycle in Kc with two rational external angles at each

point. The neighborhood Uc of αc is bounded by suitable equipotential lines and the

ends of six dynamic rays, for the angles 5/63, 10/63, 17/63, 17/63, 20/63 and 34/63.

Then there is a domain ∆c corresponding to ∆ and containing the critical value c,

such that its iterates f i
c(∆c) are pairwise disjoint for i = 0, 1, 2, 3 and the third

iterate is given by Uc . Now ρc is bounded away from 1 on ∆, Uc is forward invariant

under a suitable branch of f−1
c , and φc is well-defined on Uc . Define u : ∆ → C by

u(c) := φc(f
3
c (c)), then we have c ∈ M ⇔ u(c) ∈ Xc for c ∈ ∆. One can show that

u′(a) = d
dc

(
f 3

c (c)− αc

)
|c=a

6= 0 [DH2, DH3].
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Scaling Properties of M

The Hausdorff distance defines a metric on the set of non-empty compact subsets of

C, see [D5, T1]. d(A, B) is the smallest ε ≥ 0 such that A is contained in a closed ε-

neighborhood of B and vice versa, i.e. for x ∈ A there is a y ∈ B with |x−y| ≤ ε and

for y ∈ B there is an x ∈ A with this property. The Hausdorff-Chabauty distance

[T1] is defined for closed but possibly unbounded sets, dr(A, B) is the Hausdorff

distance of (A ∩Dr) ∪ ∂Dr and (B ∩Dr) ∪ ∂Dr . Thus it is the smallest ε ≥ 0, such

that every x ∈ A with |x| < r− ε belongs to a closed ε-neighborhood of B, and vice

versa. The following Lemma shows that the Mandelbrot set has asymptotically a

linear self-similarity at the Misiurewicz point a, both as a set and concerning special

sequences of centers or Misiurewicz points:

Lemma 8.4 (Tan Lei, Douady–Hubbard, Eckmann–Epstein)

1. Suppose that ∆̃ is a neighborhood of a in ∆, and for c ∈ ∆̃ consider a closed set

X̃c , which is self-similar in the sense that ρcX̃c∩Dr′ = X̃c∩Dr′ for some r′ > 0, such

that X̃ := {(c, x) |x ∈ X̃c} is closed in ∆̃×C, and such that there is a dense set of

sections: there is a dense set A ⊂ X̃a∩Dr′ and for every x ∈ A there is a continuous

hx : ∆̃ ⊃ Vx → C with hx(c) ∈ X̃c and hx(a) = x. Then M̃ := {c ∈ ∆̃ |u(c) ∈ X̃c}
is asymptotically self-similar around a with scale ρa and model (u′(a))−1X̃a : for

every radius r < r′ we have dr

(
ρn

au
′(a)(M̃ − a), X̃a

)
→ 0 for n→∞.

2. Suppose that g : ∆̃ → C is holomorphic with g(c) ∈ Uc\{αc}. For sufficiently large

n there is a unique cn ∈ ∆̃ solving fn−1
c (c) = g(c) and f j

c (c) ∈ Uc for 3 ≤ j ≤ n− 1.

With K := φa(g(a))/u′(a) we have the asymptotics cn = a+Kρ4−n
a +O(nρ−2n

a ).

Item 1 of Lemma 8.4 is due to Tan Lei, see [DH2, II, p. 139–152] and [T1]. Item 2 is

found in [DH3, EE, T4], but we shall sketch the proof below. The most important

application of item 1 is obtained for ∆̃ = ∆ and X̃c = Xc : we have

c ∈M⇔ c ∈ Kc ⇔ f 3
c (c) ∈ Kc ⇔ u(c) ∈ Xc (8.3)

for c ∈ ∆, thus M̃ = M ∩ ∆. Now X̃ is mapped by (c, x) 7→ (c, φ−1
c (x)) to

the intersection of the sets
{

(c, z)
∣∣∣ |fn

c (z)| ≤ 1/2 +
√

1/4 + |c|
}

, thus it is closed.

The dense set of sections is obtained from the repelling periodic points in Ka ,

which move holomorphically for c in suitable neighborhoods of a. Thus we have

dr

(
ρn

au
′(a)(M− a), Xa

)
→ 0: when M is blown up successively by a factor of ρa

around a, the rescaled and rotated sets converge to a linearly self-similar model Ya ,

which is related to the asymptotic model Xa of Ka :

dr/|u′(a)|
(
ρn

a(M− a), Ya

)
→ 0 with u′(a)Ya = Xa . (8.4)

Here r′ should be chosen such that Dr′(αa) ⊂ Ua , but in fact the statement re-

mains valid for any r′ by choosing n sufficiently large, since Xc is unbounded. In

Figure 8.5 the disk is replaced with a rectangle. According to [Mi1, p. 247], we

have the analogous convergence property for the Hausdorff distance on Ĉ. Another
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application of item 1 was given in [T2], where Tan Lei obtained scaling properties of

para-puzzle-pieces around a and proved that M is locally connected at a. We shall

apply this item to obtain scaling properties of frames and of fundamental domains

for the homeomorphism h.

Item 2 is employed to obtain sequences of centers spiraling towards a: choose g such

that fk
c (g(c)) ≡ 0 for c ∈ ∆̃, then cn is a center of period dividing n + k. Here we

may take g(c) ≡ 0, then cn is a center of exact period n, with the property that

there is no center of a smaller period on the arc from a to cn . The tuned copies

Mn = cn ∗M have diameter � ρ−2n
a [EE], see also [Mu4]. We shall employ item 2

also to construct sequences of Misiurewicz points below.
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Figure 8.5: In the four images a neighborhood of a = γM(9/56) is blown up successively
by a factor ρ3

a with ρa = f ′a(αa) = 2αa . The parts of ρn
a(M− a) in some fixed rectangle

are shown for values of n increasing by 3, i.e. the disk from Lemma 8.4 is replaced with
the rectangle. Under this rescaling each branch of M converges to a branch of Ya . The
argument of ρ3

a is very small, but in fact the three branches behave like logarithmic spirals
at a, turning around a an infinite number of times at exponentially small distances. The
numbers are the orders of the maximal frames Fn

M according to (8.10).

Sketch of the proof of Lemma 8.4:

1.: The set Dr ∩ ρn
au

′(a)(M̃ − a) consists of points y = ρn
au

′(a)(c − a) with c ∈ M̃
and |u′(a)(c−a)| ≤ r|ρa|−n. Now u′(a)(c−a) is approximated well by u(c) for large

n and ρn
a is approximated by ρn

c ; we have the Taylor estimate

ρn
au

′(a)(c− a) = ρn
cu(c) +O(nρ−n

a ) . (8.5)
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Thus the point y is close to ρn
cu(c) ∈ X̃c ∩ Dr′ , and the latter set is contained in a

small neighborhood of X̃a , because X̃ is closed. For the converse statement we shall

employ the dense set of sections: for a given ε > 0 there is a finite set of points x

such that the union of their ε/2-neighborhoods covers X̃a∩Dr , and for each of these

points there is a sequence of parameters cxn solving ρn
cu(c) = hx(c) by the Brouwer

Fixed Point Theorem. We have |ρn
cx
n
u(cxn)| ≤ r′ and cxn ∈ M̃ because of hx(c) ∈ X̃c

for all c ∈ ∆̃. Now consider

∣∣∣x− ρn
au

′(a)(cxn − a)
∣∣∣ ≤ ∣∣∣x− hx(cxn)

∣∣∣ +
∣∣∣ρn

cx
n
u(cxn)− ρn

au
′(a)(cxn − a)

∣∣∣ . (8.6)

For n → ∞ the first term goes to 0 because hx is continuous, and the second term

is treated as before, thus X̃a ∩Dr is contained in an arbitrarily small neighborhood

of ρn
au

′(a)(M̃ − a) for n→∞.

2.: Both conditions on cn together are equivalent to

ρn−4
c u(c) = φc(g(c)) or c− a = ρ4−n

c

c− a

u(c)
φc(g(c)) . (8.7)

For sufficiently large n, Banach’s Contraction Mapping Principle shows that there

is a unique solution, and starting an iteration with c = a yields cn ≈ a + Kρ4−n
a .

The error bound O(nρ−2n
a ) is obtained from the next iterate and a Taylor estimate

ρ−n
c = ρ−n

a + O(nρ−2n
a ) for c − a = O(ρ−n

a ). Recall that the Contraction Mapping

Principle provides us with a lower error bound as well, if the Lipschitz constant is

L < 1/2, thus the stronger error bound O(ρ−2n
a ) claimed in [EE] is wrong.

Both results rely on a combination of local and global dynamics, a parameter or

critical value is iterated to a neighborhood of αc , follows the expanding dynamics

of fc at αc for some time, and is confronted with global dynamics afterwards. The

latter is given by the globally determined Julia set in applications of item 1, and by

a globally motivated definition like g(c) ≡ 0 in applications of item 2.

According to (8.4), the asymptotic models Xa of Ka at αa and Ya of M at a are

related by u′(a)Ya = Xa . Finally we shall define a third asymptotic model, which

is less convenient for proofs, but which shows that M at a is related to Ka at a.

Consider the set Za := lim ρn
a(Ka−a) and the mapping Fa(z) := f−3

a ◦fa ◦f 3
a , which

is expanding at its fixed point a. We have the conjugation

ψa(z) := lim
n→∞

ρn
a

(
F−n

a (z)− a
)

=
1

(f 3
a )′(a)

φa(f 3
a (z)) : Ka ∩∆a → Za , (8.8)

which implies thatXa = (f 3
a )′(a)Za and Ya = λZa with λ = (f 3

a )′(a)/u′(a). Although

results like those of Lemma 8.4 are easier to obtain for Xa than for Za , we shall

see below that it makes sense to compare Ya and Za according to the intuition

M− a ∼ λ(Ka − a), e.g. corresponding regions have the same external angles, and

dr

(
M− a, λ(Ka− a)

)
= o(r). Locally Xa and Za are conformal images of Ka at αa

or a, and we shall extend the definition of external angles and frames to these sets.
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8.5 Scaling Properties of Frames and of h

If Fn
a (u−, u+) is a dynamic frame for Ka in Ua , we shall define a frame in the

asymptotic model Xa by Fn
X(u−, u+) := φa(Fn

a (u−, u+)), and if Fn
a (u−, u+) is a

dynamic frame for Ka in ∆a , a frame in the asymptotic model Za is defined by

Fn
Z (u−, u+) := ψa(Fn

a (u−, u+)). In the latter case we also define a frame in the

asymptotic model Ya of M by

Fn
Y (u−, u+) := λFn

Z (u−, u+) =
1

u′(a)
Fn−3

X (u′−, u
′
+) , (8.9)

where Fn−3
a (u′−, u

′
+) = f 3

a (Fn
a (u−, u+)). The frames in the three asymptotic models

have empty interiors and single vertices, in contrast to parameter frames. Note

that some dynamic frames in ∆a have the same indices and bounding external

angles as some parameter frame in ∆, while others do not. Not only are parameter

frames defined only for parameters behind a, but moreover there are bifurcations

of dynamic frames which prohibit a 1:1-correspondence between parameter frames

and dynamic frames of Ka . The correspondence makes sense in particular for the

maximal frames on EM := E4
M(3, 4), and we have mentioned in Sections 1.5 and 7.1

that our original motivation for the definition of parameter frames was the fact

that the maximal parameter frames have the same bounding external angles as the

corresponding dynamic frames in Ka , and that they become approximately star-

shaped for c → a. It was observed in [Mi1, p. 248] that the centers cn belong to

star-shaped regions. There is a unique sequence of maximal frames Fn
a of increasing

orders n = 4, 7, 10, . . . converging monotonously to a on Ea := E4
a(3, 4), the indices

are given by

Fn
a = Fn

a

(11 · 2n−3 − 1

7
,

15 · 2n−3 − 2

7

)
. (8.10)

We have the corresponding parameter frames Fn
M and frames Fn

Z , Fn
Y in the asymp-

totic models. For n, m = 4, 7, 10, . . ., the dynamic frame Fm
a has two preimages

under fn
a in Fn

a , one on each side of the edge, and the preimage with angles in

[11/56, 23/112] shall be denoted by Fn, m
a . This dynamic frame of order n + m is

given by the indices

Fn, m
a = Fn+m

a

(11 · 2n+m−3 + 3 · 2m−3 − 1

7
,

11 · 2n+m−3 + 7 · 2m−3 − 2

7

)
. (8.11)

The frames Fn, m
Z and Fn, m

Y in the asymptotic models Za and Ya are defined analo-

gously, but the parameter frames Fn, m
M exist only for n > m according to Section 7.3.

For n, m = 4, 7, 10, . . ., with n > m, define cn and cn, m as the centers of lowest

periods in Fn
M and Fn, m

M , and zn, zn, m ∈ Ka shall be the degenerate vertices of the

frames Fn
a and Fn, m

a . The vertices yn, yn, m ∈ Ya of Fn
Y and Fn, m

Y are defined in the

same way.

Proposition 8.5 (Scaling Properties of Frames and of h)

1. We have cn+3 − a = ρ−3
a (cn − a) + o(cn − a), cn − a = λ(zn − a) + o(cn − a) and

limk→∞ ρ3k
a (cn+3k − a) = yn . The homeomorphism h from Section 1.2 maps these

centers as h(cn+3) = cn .
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2. We have cn+3, m−a = ρ−3
a (cn, m−a)+o(cn, m−a), cn, m−a = λ(zn, m−a)+o(cn, m−a)

and limk→∞ ρ3k
a (cn+3k, m − a) = yn, m. Now h maps h(cn+3, m+3) = cn, m 6= cn, m+3 .

3. We have Fn+3
M −a = ρ−3

a (Fn
M−a)+o(dist(Fn

M , a)) in Hausdorff distance, Fn
M−a =

λ(Fn
a − a) + o(dist(Fn

M , a)) and limk→∞ ρ3k
a (Fn+3k

M − a) = Fn
Y , see Figure 8.5. The

homeomorphism h maps the maximal frames as h(Fn+3
M ) = Fn

M .

4. We have Fn+3, m
M −a = ρ−3

a (Fn, m
M −a)+o(dist(Fn, m

M , a)), Fn, m
M −a = λ(Fn, m

a −a)+

o(dist(Fn, m
M , a)) and limk→∞ ρ3k

a (Fn+3k, m
M − a) = Fn, m

Y . Now h maps the subframes

according to h(Fn+3, m+3
M ) = Fn, m

M 6= Fn, m+3
M , see Figure 8.6.

5. Thus h is not asymptotically linear, i.e. differentiable, at a. But there is a

sequence of fundamental domains Sj of h on EM , i.e. in particular h(Sj+1) = Sj ,

such that limj→∞ ρ3j
a (Sj−a) ⊂ Ya exist and is a fundamental domain for the scaling

of a branch of Ya by ρ3
a .

h is not asymptotically linear because h(cn) ∼ ρ3
acn and h(cn, m) 6∼ ρ3

acn, m . Similar

scaling properties are obtained for many sequences of frames, centers, α- or β-type

or more general Misiurewicz points. When the orbit of a critical value c does not

return to Vc , then we expect h(c) − a ∼ ρ3
a(c − a), but the scale will be different

otherwise. When a set does not return to Vc as a whole, it will be scaled by ρ3
a

under h as a set, but subsets will not be mapped linearly. By a suitable piecewise

definition one obtains a homeomorphism which scales by ρ3
a on cn, m as well, but it

may still have a different scaling behavior on other points.

On the points whose orbits are not returning, h acts combinatorially in the same way

as ηc(z), and lim ρ3k
a (η−k

a (z) − a) yields a conformal map from Ea to a local branch

of Za by (8.8). But even if limk→∞ ρ3k
a (h−k(c) − a) : EM → Ya exists pointwise, it

will be neither continuous nor surjective.

F10
M

4

7

F13
M

4

7

10

F16
M

4

7

10

13

F19
M

4

7

10

13

16

Figure 8.6: Parts of rescaled parameter frames ρn
a(Fn

M − a). The numbers m mark the
subframes ρn

a(Fn, m
M −a) according to (8.11). Now we have ρn+3

a (Fn+3, 4
M −a) ≈ ρn

a(Fn, 4
M −a)

and ρn+3
a (Fn+3, 7

M − a) ≈ ρn
a(Fn, 7

M − a), but h : Fn+3, 7
M → Fn, 4

M shows that h is not
asymptotically linear at a. Observe that the arms of F19

M already look like those of Ka

in Figure 8.4. The rescaled centers are converging to ρ4
a

φa(0)
u′(a) , and the vertices of the

frames are of the form cn ±Kρ
−3n/2
a , thus they are converging to the same point under

the rescaling by ρn
a . They have different limits under rescaling by ρ3n/2

a , cf. Section 8.6.
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Proof of Proposition 8.5:

1.: Apply item 2 of Lemma 8.4 to g(c) ≡ 0 to obtain a sequence of centers cn ,

then the critical orbit of fcn shows that cn is the center of period n in Fn
M , and

we have cn = a + φa(0)
u′(a)

ρ4−n
a + O(nρ−2n

a ). Now f 3
a (zn) = f−(n−4)

a (0) and (8.8) yield

(f 3
a )′(a)ψa(zn) = φa(f−(n−4)

a (0)) = ρ4−n
a φa(0), thus zn = a + φa(0)

(f3
a )′(a)

ρ4−n
a + O(ρ−2n

a )

since ψ′a(a) = 1, and yn = λψa(zn) = φa(0)
u′(a)

ρ4−n
a . Restricting n to 4, 7, . . ., these

asymptotics imply the claimed relations. The orbit of cn+3 under the quadratic-like

mapping gcn+3 is qualitatively the same as that of cn under fcn , thus h(cn+3) = cn .

2.: Fix m ∈ {4, 7, . . .}. The dynamic frame F1
a contains two preimages of 0 of order

m, such that both are mapped to the vertex of Fm
a by fa . Consider the point in the

arm between Ra(67/112) and Ra(71/112), it is moving holomorphically for c in a

neighborhood of a, thus defining a function gm(c) and a sequence of centers cn, m for

large n. Again we restrict n to 4, 7, . . .. The critical orbit follows the orbit of Fn
cn, m

for the first n − 1 iterations and the orbit of Fm
cn, m

for the next m iterations, thus

cn, m is indeed the center of period n+m in Fn, m
M . These centers are well-defined for

n > m according to Section 7.3, and for large n they are obtained from Lemma 8.4,

which yields their asymptotics. The critical orbit of gcn+3, m+3 is qualitatively the

same as that of fcn, m , since for all c ∈ EM the orbits of Fn+3
c and Fm+3

c under gc are

the same as those of Fn
c and Fm

c under fc , thus h(cn+3, m+3) = cn, m .

3.: As in the proof of item 1, it will be easier to show a stronger statement by omitting

the restriction on n. For c ∈ ∆̃ := ∆ the dynamic frame F1
c shall be the subset of Kc

that is mapped into the closed sector bounded by Rc(9/56) and Rc(15/56) by fn
c .

For n ≥ 4 the dynamic frame Fn
c is defined as the preimage of f−(n−4)

c (F1
c ) under

f 3
c : ∆c → Uc . This generalizes the notion of dynamic frames to parameters c before

a and outside of M, here Fn
c is totally disconnected for c ∈ ∆ \M, and it has two

connected components for parameters c ∈ ∆∩M before a. Now X̃c shall be the union

of {0} and the sets Φc(f
3
c (Fn

c )) = (f 3
a )′(a)Fn

Z for n ≥ 4, it satisfies the assumptions

from Lemma 8.4 for some r′ > 0, thus M̃ = {c ∈ ∆ |u(c) ∈ X̃c} is asymptotically

similar to X̃a , and its intersection with the left branch of M1/3 consists of the

parameter frames F4
M , F7

M , . . .. The intersection with the right branch consists of

parameter frames of orders 5, 8, . . ., and the intersection with the trunk is described

as a union of sets F6
M , F9

M , . . . each consisting of two connected components. The

self-similarity of X̃c requires that ρ3
cΦc(f

3
c (F4

c )) = ρ3
cΦc(F1

c ) is outside of Dr′ for

c ∈ ∆, but we shall assume for convenience that Φa(f 3
a (F4

a )) = Φa(F1
a )) is contained

in Dr′ . If this assumption should be wrong, X̃c could be extended in a suitable way

to satisfy the assumption without changing the asymptotics.

Fix r < r′ such that Φa(F1
a ) is contained in Dr , and choose a δ > 0 such that the

Hausdorff distance of Φa(f 3
a (Fn

a )) and X̃a \Φa(f 3
a (Fn

a )) is bounded below by 2δρ−n
a .

For sufficiently large n we have

dr

(
ρn

au
′(a)(M̃ − a), X̃a

)
< δ and

∣∣∣ρn
a

(
u′(a)(cn − a)− ρ4−n

a φa(0)
)∣∣∣ < δ , (8.12)
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thus d
(
ρn

au
′(a)(Fn

M − a), ρn
a(f 3

a )′(a)Fn
Z

)
→ 0 for n → ∞. Here the fact that X̃a

is disconnected yields a refined statement for the convergence of subsets. We have

employed cn ∈ Fn
M for n = 4, 5, 7, 8, . . ., and an extra argument is needed to exclude

that e.g. ρ3k+1
a u′(a)(F3k

M − a) is close to ρ3k+1
a (f 3

a )′(a)F3k+1
Z ; such an argument can

be given by considering suitable sequences of Misiurewicz points in addition to the

centers cn . Now we have control over the asymptotics of certain maximal parameter

frames Fn
M :

d
(
ρn

a(Fn
M − a), ρn

aFn
Y

)
→ 0 , d

(
ρn

a(Fn
a − a), ρn

aFn
Z

)
→ 0 , Fn

Y = λFn
Z . (8.13)

Finally h(Fn+3
M ) = Fn

M for n = 4, 7, . . . is obtained as in Theorem 7.6.

4.: These results are obtained analogously, by combining the techniques from items 2

and 3.

5.: Consider the following asymptotics for n = 4, 7, . . .→∞:

h(cn)− a

cn − a
=

cn−3 − a

cn − a
→ ρ3

a , (8.14)

h(cn, 7)− a

cn, 7 − a
=

cn−3, 4 − a

cn, 7 − a
∼ ρ3

a

cn, 4 − a

cn, 7 − a
(8.15)

→ ρ3
a

y10, 4 − a

y10, 7 − a
= ρ3

a

φa(g4(a))

φa(g7(a))
6= ρ3

a , (8.16)

which shows that the homeomorphism h is not asymptotically linear at a, i.e. h(c)

is not of the form ρ3
a(c − a) + o(c − a). Nevertheless the scaling factor ρ3

a occurs

for many interesting sequences, and in fact there are fundamental domains of h

that are scaled asymptotically by ρ3
a : choose any sequence of Misiurewicz points c′j

with h(c′j+1) = c′j , such that c′0 is separating b from a, and such that Lemma 8.4

yields asymptotics of the form c′j = a + K ′ρ−3j
a + O(jρ−6j

a ). A possible choice is

given by c′0 = γM(199/1008). Now Sj shall consist of the connected component of

M\{c′j+1, c
′
j} between these two points, with c′j+1 included and c′j excluded. These

sets form fundamental domains for h at a, i.e. h(Sj+1) = Sj , and ρ3j
a (Sj−a) converges

to a subset S ⊂ Ya , which is a fundamental domain for the scaling of a global branch

of Ya by ρ3
a . (Strictly speaking, the Hausdorff distance is defined only for closed sets,

but it is well-defined here and the notion of fundamental domains requires that c′j
is excluded.) The asymptotics of Sj are obtained by the same idea as in the proof

of item 3: by another sequence of Misiurewicz points we make a decomposition

Sj = S ′j ∪ S ′′j such that X̃ ′
c and X̃ ′′

c are disconnected, and a convergence result for

components follows.

General Misiurewicz Points

Now suppose that a is a Misiurewicz point of preperiod k, period p and ray period

rp, with multiplier ρa . Then there is an analog to Lemma 8.4 [T1, DH3, EE, T4],

the idea is again that for c ≈ a the critical orbit of fc stays close to the orbit of
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a preperiodic point for some time and then for a long time every p-th iterate is in

a set Uc around a periodic point zc , where fp
c is conjugate to multiplication with

ρc . Preimages of 0 close to za yield sequences of centers cn with asymptotically

linear scaling behavior. They can be chosen such that there is no preimage of lower

order between that preimage and za , then the corresponding roots have analogous

properties. The following three cases occur according to Sections 3.3 and 3.4:

• r = 1 and a has only one external angle, it is not a pinching point of M. The

period of cn grows by p.

• r = 1 and a has two external angles, the repelling cycle corresponds to the

root of a primitive hyperbolic component before a. On both branches of M
there are sequences of centers with periods growing by p. The two branches

of the asymptotic model Ya shall not be linearly similar to each other.

• r ≥ 2 and a has r external angles, the repelling cycle corresponds to the root

of a hyperbolic component of period rp before a, that has bifurcated from

a period-p component. There are sequences of centers with periods growing

by p, which are spiraling towards a. Multiplication by ρa is rotating the r

branches of Ya , which are pairwise homeomorphic.

A pinching point close to a with stable external angles defines Misiurewicz points

(c′j) and fundamental domains Sj for the asymptotic scaling analogously to the

construction for item 5 of Proposition 8.5. For larger j the critical orbits move

around zc′j
for some more rounds, thus the difference between suitable external

angles of c′j and a shrinks by a factor of 2rp on every branch. This shall complete

the sketch of the proof for item 3 of Proposition 3.10. In the case of the β-type

Misiurewicz point a = −2, we have βa = 2 and ρa = 4. The conjugation φa at

βa was obtained explicitly in (3.4) of Example 3.5, and the analog to Lemma 8.4

from [EE] yields a sequence of centers cn of period n converging monotonously to a

according to cn = −2 + 3
2
π24−n +O(n4−2n), see also [EEW]. McMullen [Mu4] has

considered the bifurcation locus of general analytic families of rational functions,

and shown that generically there are sequences of little Mandelbrot sets converging

geometrically to Misiurewicz points.

If a homeomorphism h according to Section 8.1 is constructed on a local branch EM

of M at a, the mapping ηc ensures that critical orbits under gc take one round less

through the branches at zc than orbits under fc , and if the orbit is never returning

to Ec , this fact is sufficient to determine the image of c under h. In particular

the period of h(cn) is the period of cn minus rp, and the preperiod of h(c′j) is the

preperiod of c′j minus rp, e.g. for c′0 = γM(Θ−
2 ). Thus h scales by ρr

a on special

sequences of points and on the sets Sj, which become fundamental domains of h.

But again there will be sequences of centers and Misiurewicz points with geometric

scaling behavior at a, whose critical orbits travel twice through Vc and never through

Wc , and here the ratio h(c)−a
c−a

will be approximated by a factor different from ρr
a .
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8.6 Scaling Properties of M on Multiple Scales

Recall the notations of a = γM(9/56), ρa = 2αa, φc , u(c) = φc(f
3
c (c)), and the

centers cn and maximal parameter frames Fn
M from Sections 8.4 and 8.5. We have

cn = a+ φa(0)
u′(a)

ρ4−n
a +O(nρ−2n

a ) and cn ∈ Fn
M . The frames are asymptotic to frames in

the asymptotic model, e.g. Fn
M−a = ρ4−n

a F4
Y +o(ρ−n

a ) in Hausdorff distance. Here the

frames in Ya are homeomorphic to frames in the Julia set Ka , in particular they have

empty interiors and degenerate vertices. The arms of Fn
M have a diameter � |ρa|−n,

and the maximal tuned copies Mn have a diameter � |ρa|−2n according to [EE].

We shall describe an asymptotic scaling behavior of M on multiple scales between

these two, in neighborhoods of the centers cn . No reference to frames needs to be

made, but asymptotics for the fine-structure of frames are obtained along the way.

In particular the small arms on multiple scales can be identified with decorations

and with arms according to the discussion in Section 7.3.

The proof of the following theorem is based on a generalization of Lemma 8.4, item 1.

There is an analogous generalization of item 2, and one can show e.g. that the vertices

of the parameter frames Fn
M are given asymptotically by cn±Kρ−3n/2

a , cf. Figure 8.6.

The powers are defined by fixing a choice of log ρa . The idea is simple: we have

c ∈ Fn
M ⇔ c ∈ Fn

c ⇔ fn−1
c (c) ∈ F1

c and F1
c is mapped 2:1 to the branches behind

γc(9/56) by fc . Now for c ∈ Fn
M we have γc(9/56) − c ∼ K1ρ

−n
a , and the vertices

of F1
c are given by ±

√
γc(9/56)− c ∼ ±K2ρ

−n/2
a . The asymptotics are transfered to

the asymptotic models and to the parameter plane, observing that the mapping fn−4
c

between suitable domains corresponds to a multiplication with ρn−4
c . By iterating

this idea, the multiple scales are of the form ρ−γkn
a with γk = 1, 3/2, 7/4, . . . → 2

for k ∈ N0 . See the example in Figure 1.4 on page 21.

Theorem 8.6 (Multiple Scales)

Consider a = γM(9/56), the sequence of centers cn , the mappings φc and u(c), and

the asymptotic model Xa according to Sections 8.4 and 8.5. Define the constant

Aa := (f 3
a )′(a)/(φ′a(0))2 and for k ∈ N0 set γk := 2− 2−k. Then we have

ργk(n−4)
a u′(a)

(
M− cn

)
→

(
Xa − φa(0)

A2k−1
a

)1/2k

(8.17)

for n→∞, in Hausdorff-Chabauty distance dr for every r > 0.

The statements and the proof generalize to other sequences of centers with geometric

scaling behavior, and to all Misiurewicz points in M. It is possible to obtain scaling

properties of homeomorphisms h on substructures as well.

Sketch of the proof :

c = cn satisfies the equations . . . = f 3n−1
c (c) = f 2n−1

c (c) = fn−1
c (c) = 0. f 3

c (c) is close

to αc and the iterates stay in the domain of φc until 0 is reached. For c ≈ a, the

mapping f 4
c (z) from a neighborhood of 0 to a neighborhood of αc is 2:1. Consider

the corresponding mapping

vc(z) := φc(f
4
c (φ−1

c (z))) (8.18)
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in the plane containing Xc , which is a 2:1 mapping from a neighborhood of φc(0)

to a neighborhood of 0. It is of the form

vc(z) = u(c) + Ac

(
z − φc(0) +O((z − φc(0))2)

)2
, (8.19)

where the estimate O((z− φc(0))2) is uniform for c in a neighborhood of a, and the

coefficient Ac depends analytically on c. We have Aa = (f 3
a )′(a)/(φ′a(0))2 6= 0. Now

consider parameters with c− cn = O(ρ−3n/2
a ), then we have c− a = O(ρ−n

a ) and

ρn−4
c u(c)− φc(0) = ρn−4

a u′(a)(c− a)− φa(0) +O(nρ−n
a ) (8.20)

= ρn−4
a u′(a)(c− cn) +O(nρ−n

a ) = O(ρ−n/2
a ) (8.21)

by the same Taylor estimates as for (8.5) in Section 8.4. Combining these estimates

with (8.19) yields

φc(f
2n−1
c (c)) = ρn−4

c vc((ρ
n−4
c u(c)) (8.22)

= φc(0) + Aa

(
ρ3(n−4)/2

a u′(a)(c− cn)
)2

+O(nρ−n/2
a ) . (8.23)

Now a point in ρ3(n−4)/2
a u′(a)

(
M− cn

)
∩Dr is of the form y = ρ3(n−4)/2

a u′(a)(c− cn)

with c ∈ M and c − cn = O(ρ−3n/2
a ). Here c ∈ M implies c ∈ Kc and

φc(f
2n−1
c (c)) ∈ Xc , and (8.23) shows that for large n, y is arbitrarily close to

the set
(
Xc − φc(0)

Aa

)1/2

, where the square root denotes the complete preimage

of the set under z 7→ z2. Thus the rescaled Mandelbrot sets become arbitrar-

ily close to
(
Xa − φa(0)

Aa

)1/2

for n → ∞, since {(c, x) |x ∈ Xc} is closed. For

the converse statements consider the dense set of continuous sections hx(c) as in

(8.6), here we construct sequences of points cxn by choosing one of the two solutions

of φc(f
2n−1
c (c)) = hx(c) suitably. This shall complete the sketch of the proof for

γ1 = 3/2. For γ0 = 1 the statement is obvious from Tan Lei’s result, and for k ≥ 2

the proof is similar to the one described here, employing an inductive estimate for

φc(f
(k+1)n−1
c (c)) = (ρn−4

c vc◦)k(ρn−4
c u(c)).

Remark 8.7 (Arms of M on Multiple Scales)

1. Xa has six branches at φa(0), four of which are bounded and two are unbounded.

One of the unbounded branches contains the branch point 0, and two unbounded

branches behind it. Thus (Xa − φa(0))1/2k
has 4 · 2k bounded and 2 · 2k unbounded

branches at 0, and there are 2k unbounded branches that split into two branches

at about the same distance from 0 as the diameter of the bounded branches. See

Figure 1.4 on page 21. The image in the middle corresponds to γ1 = 3/2, the two

prominent branch points are the vertices of the frame, the other two unbounded

components correspond to the 1/3- and 2/3-sublimbs of M58 . There are eight

bounded arms, four of which are decorations attached to tuned β-type Misiurewicz

points of order 3, cf. Figure 7.5 on page 117. The remaining four arms are understood

from the discussion in Section 7.3, cf. the frame in the middle bottom of figure 7.4

on page 116. See also Figure 8.6, where the eight small arms are close to the
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limit model in the right image, but their structure is seen in the left image. This

description is adapted to n = 4, 7, . . ., and it will be similar for n = 5, 8, . . ., but it

will be different for n = 6, 9, . . .. The asymptotic models do not care about these

differences, they are the same for the three branches of M1/3 at a. Note that for

large n, the arms of the frame must spiral many times around the part between the

vertices, because the angles are obtained from different powers of ρa.

2. In the case of the β-type Misiurewicz point a = −2, we have Xa = (−∞, 0] and

φa(0) = −π2/4, u′(a) = −8/3, Aa = −16/π2. The asymptotic model of order k

consists of 2k half-lines and 2k line segments. For any Misiurewicz point a we find

that the numbers of unbounded and of bounded arms are doubled when k is increased

by 1. For small k and large n, there are C · 2k arms of diameter � |ρa|−γkn, and in

the asymptotic model of order k, the arms of orders < k have become unbounded,

and the arms of orders > k have shrinked to a point.

3. It is well-known from many observations, that typically a small tuned copy Mn

of M shows a “binary structure” in its decorations, cf. [B1, p. 103] and the corre-

sponding Color Plates 4, 5, 6. Not only is the number of decorations doubled under

suitable magnifications, but the new decorations have about the same diameter, and

there is a rotationally symmetric structure. These observations have a qualitative

explanation from tuning, since the decorations are attached to tuned copies of β-

type Misiurewicz points, and their number is doubled with the order. Moreover the

interval of angles belonging to a decoration has the same length for all decorations of

the same order. But this explanation cannot prove that decorations of higher order

are much smaller with respect to the Euclidean distance, and that decorations of

the same order are of the same diameter, that there is a rotational symmetry. Now

for tuned copies close to suitable Misiurewicz points, these facts are an easy con-

sequence of Theorem 8.6, since the asymptotic models show rotational symmetry.

Note however that the decorations are only asymptotically homeomorphic, accord-

ing to Section 7.3 the decorations at the tuned copies of γM(1/8) and γM(3/8) are

not exactly homeomorphic.

4. To see the arms of order k clearly, or for a given Hausdorff-Chabauty distance

ε in (8.17), we expect that n must grow exponentially with k. For k → ∞ we

have γk → 2, and the tuned copies are scaled by ρ−2n
a according to [EE]. Is there

a hairiness phenomenon, as it was conjectured for period doubling by Milnor [Mi1],

and proved by Lyubich [L4]?
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9 Combinatorial Surgery and the

Homeomorphism Group of M

Recall the homeomorphism h on the parameter edge EM from a = γM(9/56) to

b = γM(23/112) from Theorem 1.2. We shall prove Theorem 1.5 by constructing

a mapping H of external angles, which corresponds to the homeomorphism h: the

mapping H in U ′ \ D was obtained by quasi-conformal surgery, and h is described

by h(γM(θ)) = γM(H(θ)). Here H is the boundary value of H on S1, which can be

constructed combinatorially as well. In fact the results are obtained for the more

general surgeries according to Definition 5.1. Homeomorphism groups of M and

S1/∼ are discussed and we show in addition that h can almost be obtained from H

in turn, without using quasi-conformal surgery explicitly.

9.1 The Mapping H of External Angles

The mappings F, G, G̃ from Section 5.2 have continuous extensions to ∂D. The

corresponding mappings of S1 = R/Z = [0, 1) shall be denoted by F, G, G̃. They

are related by F (ei2πθ) = ei2πF(θ), and analogously for G and G̃. We have F (z) =

z2 and F(θ) = 2θmod 1. The boundary values of G and G̃ are the same as those of

G(1) and G̃(1), respectively, thus they are independent of all choices made for G and

G̃. In the example from Section 1.2 we have

G(θ) =



16 θ − 11/4 , 11/56 ≤ θ ≤ 199/1008

θ/4 + 23/64 , 199/1008 ≤ θ ≤ 23/112

θ/4 + 29/64 , 29/112 ≤ θ ≤ 269/1008

16 θ − 15/4 , 269/1008 ≤ θ ≤ 15/56

2 θ mod 1 , otherwise,

(9.1)

G̃(θ) =



θ/4 + 11/32 , 11/56 ≤ θ ≤ 103/504

16 θ − 23/8 , 103/504 ≤ θ ≤ 23/112

16 θ − 29/8 , 29/112 ≤ θ ≤ 131/504

θ/4 + 15/32 , 131/504 ≤ θ ≤ 15/56

2 θ mod 1 , otherwise .

(9.2)

Now g(1)
c maps Rc(θ) to Rc(G(θ)), and gc maps an “end” of every dynamic ray

in the same way (only for θ ∈ {Θ±
i }, the ray may be mapped to some quasi-arc).

According to Section 2.2, the conjugations H and H̃ from Section 5.4 have a Hölder
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continuous extension to Ĉ \D, and the boundary values (in the sense of the above)

shall be denoted by H, H̃. Now F, G, G̃ : S1 → S1 are covering maps of degree

2 and H, H̃ : S1 → S1 are homeomorphisms, conjugating H ◦ G ◦ H−1 = F and

H̃◦G̃◦H̃−1 = F. The dense set D = {θ = r/2m | r, m ∈ N0} is completely invariant

under both F and G. Since G is expanding, D contains precisely 0 and its preimages

under F or G, and there is exactly one preimage of exact order n + 1 between two

consecutive preimages of orders ≤ n. If H is any orientation-preserving conjugation

between G and F, an induction after n shows that H is determined uniquely on D,

and thus the boundary value of H is the only homeomorphism with these properties.

Especially we see that H is fixing 0 and 1/2. The following theorem shows how to

compute H and provides a combinatorial description of ψc and h in terms of H:

Theorem 9.1 (Combinatorial Surgery)

1. There is a unique orientation-preserving homeomorphism H : S1 → S1 conjugat-

ing H ◦G ◦H−1 = F.

2. H(θ) is computed numerically from the orbit of θ under G as follows: for n ∈ N,

the n-th binary digit of H(θ) is 0 if 0 ≤ Gn−1(θ) < 1/2, and 1 if 1/2 ≤ Gn−1(θ) < 1.

3. θ ∈ Q ⇔ H(θ) ∈ Q, and in this case the (pre-) periodic sequence of digits is

obtained from a finite algorithm, cf. Example 9.2.

4. Suppose that c ∈ EM and d = h(c). Then θ is an external angle of z ∈ Kc , iff H(θ)

is an external angle of ψc(z) ∈ Kd . If Kc is locally connected, then ψc ◦ γc = γd ◦H

on S1.

5. θ is an external angle of c ∈ EM , iff H(θ) is an external angle of h(c) ∈ EM ,

thus h(c) can be determined combinatorially if c is a Misiurewicz point or a root.

Whenever RM(θ) is landing at EM , then RM(H(θ)) is landing, too. If M was locally

connected, then we would have h ◦ γM = γM ◦H on [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ].

6. H is compatible with angle tuning: suppose that θ± = .u± are the external angles

of some root c1 ∈ EM and H(.u±) = .v±. Then H(.us1us2us3 . . .) = .vs1vs2vs3 . . . for

all sequences (sn) of signs.

7. Analogous results to items 1–6 hold for H̃, and we have H̃ = H−1.

See Proposition 9.4 for regularity properties of H, and the examples in Figure 9.1.

For any surgery satisfying Condition 1.1, analogous results are obtained. H shall

be the boundary value of H, then item 4 of Theorem 9.1 (dynamic plane) holds.

If g(1)
c = fN

c in a neighborhood of z = 0, then h is extended to the exterior by

h = Φ−1
M ◦H◦FN−1◦ΦM , and in item 5 we have h◦γM = γM◦HM with HM = H◦FN−1.

In item 2 we must consider H−1(0) ≤ Gn−1(θ) < H−1(1/2).

Example 9.2 (Some Period 7 Becomes Period 4)

For our standard example from Section 1.2 and Figure 5.1, consider the orbit of

25/127 under G as given by (9.1):

25

127
G7→ 203

4 · 127
G7→ 203

2 · 127
G7→ 76

127
G7→ 25

127
.
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We read off the digits .0011 = 3/15 from Gn−1(θ) ∈ [0, 1/2) or [1/2, 1), thus

H(25/127) = 3/15. Note that 203
4·127

is preperiodic under F, but H( 203
4·127

) = 6
15

is periodic. H(34/127) = 4/15 is obtained analogously. Now consider c ∈ EM

and d = h(c): we have h(γM(25/127)) = γM(3/15), and if c is between a and

the root γM(25/127), then d is located between a and γM(3/15). Here γc(25/127)

and γc(34/127) are distinct points and 7-periodic under fc . They are 4-periodic

under gc and they are mapped to γd(3/15) and γd(4/15) by ψc . The latter points

are distinct and 4-periodic under fd . If c is between γM(25/127) and b, then d is

between γM(3/15) and b. Now γc(25/127) = γc(34/127), and this point is mapped

to γd(3/15) = γd(4/15) by ψc .

Proof of Theorem 9.1:

1.: We have shown above that the boundary value H of H has the desired properties,

and that these properties determine it uniquely on the dense set D. Note that H

can be obtained from a density argument, without knowing that it is the boundary

value of H.

2.: Doubling of θ yields a shift of binary digits. Thus the n-th digit of H(θ) is 0, iff

0 ≤ Fn−1(H(θ)) < 1/2. Now Fn−1(H(θ)) = H(Gn−1(θ)), and H is fixing 0 and 1/2.

3.: According to Section 5.2, for z ∈ Kc there are arbitrarily large n, m ∈ N with

gn
c (z) = fm

c (z). The corresponding statements for G show: for θ ∈ R/Z there are

sequences of nk, mk → ∞ with Gnk(θ) = Fmk(θ). If θ ∈ Q, then {Fm(θ)} is finite,

thus (Gn(θ)) is eventually periodic. Now the sequence of binary digits has the same

property, thus H(θ) ∈ Q. The converse is obtained from H̃ : Q → Q and item 7.

For θ ∈ [Θ−
1 , Θ−

3 ]∪ [Θ+
1 , Θ+

3 ] we have the following stronger statement analogous to

Section 5.2: H(θ) is periodic, iff θ is periodic.

4.: Rc(θ) is landing at z ∈ Kc and ψc(Rc(θ)) is a quasi-arc landing at ψc(z) ∈
Kd . By Lindelöf’s Theorem 2.1, Φd(ψc(Rc(θ)) is landing at some ei2πθ̃ ∈ S1, and

the ray Rd(θ̃) is landing at ψc(z) through the same access as Φd(ψc(Rc(θ))). We

have Φd(ψc(Rc(θ))) = H(Φc(Rc(θ))) = H(R(θ)), and by the relation of H to the

continuous boundary value of H, the quasi-arc H(R(θ)) is landing at ei2πH(θ),

which yields θ̃ = H(θ).

5.: The proof is analogous to item 4: RM(θ) is landing at c ∈ EM and h(RM(θ))

is landing at h(c) ∈ EM , since h is continuous. Now ΦM(h(RM(θ))) = H(R(θ)) is

landing at some ei2πθ̃ ∈ S1, and RM(θ̃) is landing at h(c) through the same access

as h(RM(θ)). Since H is the boundary value of H, the quasi-arc H(R(θ)) is landing

at ei2πH(θ), and we have θ̃ = H(θ).

6.: By continuity of H and density, it is sufficient to consider eventually periodic

sequences, i.e. rational angles. The statement follows from the landing property

(item 4 or 5) and the result on tuning in the dynamic plane or parameter plane

from Theorem 4.6, item 3. See Section 9.3 for a purely combinatorial proof.

7.: According to item 2 of Remark 5.7, we may choose G̃ = H ◦ F ◦ H−1 on

suitable domains and H̃ as a restriction of H−1. The boundary values H and H̃ are
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independent of these choices. Alternatively we can show directly that H−1◦G̃◦H =

F by following the orbits as in Section 5.5.

Remark 9.3 (Interpretation and Alternative Techniques)

1. It would be hard to compute the decimal coordinates of d = h(c) by following the

surgery from Chapter 5 and solving the Beltrami equation numerically. But the im-

age of any hyperbolic or Misiurewicz parameter can be determined combinatorially.

One way is by computing the external arguments according to Theorem 9.1. Alter-

natively, we can construct the Hubbard tree of fc (Section 3.6), add some preimages

of marked points, and obtain the critical orbit of gc and the Hubbard tree of fd ,

see Section 9.3. If c = γM(θ) and d = γM(θ̃), the digits of θ̃ would be obtained

by adding symbols of Rd(0), Rd(1/2) and fn−1
d (Rd(θ̃)) to the Hubbard tree. This

method illustrates a connection between item 2 and item 5 of Theorem 9.1.

2. Since H is the boundary value of the quasi-conformal mapping H, we have

immediately that H is a homeomorphism, quasi-symmetric and Hölder continuous,

see also Section 9.2.

3. The proof of items 4 and 5 was simplified by the facts that both ψc and h in

the exterior are expressed in terms of H, and that H is the boundary value of H.

In [BF1], a similar proof was given for item 4 (dynamic plane), and the analog of

item 5 (parameter plane) for rational rays was obtained from item 4 and the landing

properties according to Theorem 3.9. At that time the extension [BF2] was not yet

available, and this approach does not need an extension of h to the exterior, but it

would need additional arguments to work for irrational rays landing at points with

trivial fibers.

4. In [BF1], Branner and Fagella had obtained an extension of their homeomor-

phisms to the exterior of the limbs under the additional hypothesis of MLC: the

analog HM of H was constructed without relying on an extension, and h would be

extended by mapping RM(θ) equipotentially to RM(HM(θ)), which would match

continuously with h on M, if the Mandelbrot set was locally connected. But the

extension according to [BF2] or Section 5.4 will be better even if MLC is proved,

since it is quasi-conformal. The former extension is not quasi-conformal, since HM

does not have a bounded derivative. This will be shown for our H in Proposition 9.4,

by obtaining Hölder asymptotics at tuned angles. The remark is adopted in [BF2],

but Branner and Fagella employ Hölder asymptotics at dyadic angles.

5. Note that the mapping of external arguments in the dynamic plane according to

item 4 of Theorem 9.1 is given by the same function H for all c ∈ EM . Especially

γc(θ1) = γc(θ2) implies γd(H(θ1)) = γd(H(θ2)), cf. Example 9.2. The mapping

H is compatible with a countable family of tuning maps simultaneously, and the

statement ψc(γc(.us1us2us3 . . .)) = γd(.vs1vs2vs3 . . .) is valid as well, when c is not in

the wake of the root γM(.u±) ∈ EM .

6. Consider the inverse Φ−1
A of the Branner–Douady homeomorphism, or the renor-

malization of a tuned copy of M. We may define a mapping H : S1 → S1 of angles,

which is locally constant on the dense open set corresponding to the decorations
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that are not in the domain of the homeomorphism. This mapping will be singular

continuous with vanishing derivative, some kind of a “Devil’s Staircase”.

9.2 Hölder Continuity of H

Suppose that g(1)
c is defined combinatorially according to Definition 5.1, thus yielding

a homeomorphism h : EM → EM . G denotes the piecewise linear boundary value of G

on S1 = R/Z from Section 9.1. The circle homeomorphism H is the boundary value

of H, it was obtained combinatorially in Theorem 9.1. The following proposition

yields some regularity properties of H. In the case of the homeomorphism from

Section 1.2, G was given in (9.1), Θ±
i are defined in Figure 5.1, and both H and

H−1 are 4/7-Hölder continuous.

Proposition 9.4 (Regularity of H)

Suppose that G is the piecewise linear circle mapping for a surgery g(1)
c according to

Section 5.1, and H is the circle homeomorphism with H ◦G = F ◦H according to

Theorem 9.1. Every Θ ∈ Q/Z is periodic or preperiodic (under F).

1. Suppose that Θ ∈ Q/Z is periodic and its iterates do not meet (Θ−
1 , Θ−

3 ) ∪
(Θ+

1 , Θ+
3 ), or that it is preperiodic and the associated periodic orbit does not meet

these intervals. Then H is Lipschitz continuous at Θ, and linearly self-similar in a

neighborhood.

2. Suppose that Θ ∈ Q ∩ ((Θ−
1 , Θ−

3 ) ∪ (Θ+
1 , Θ+

3 )) is p-periodic under F and q-

periodic under G, thus Θ̃ := H(Θ) is q-periodic under F. Then there is an estimate

C1 |θ −Θ|q/p ≤ |H(θ)− Θ̃| ≤ C2 |θ −Θ|q/p in a neighborhood of Θ. An analogous

Hölder estimate holds for all preimages of Θ.

3. H and H−1 are Hölder continuous on S1, the optimal Hölder exponents are k̃v/kv

for H and kw/k̃w for H−1.

Item 1 applies in particular to Θ±
1 , Θ±

2 , Θ±
3 , and to all dyadic angles. (The Branner–

Fagella homeomorphisms do not satisfy our assumptions. Here H is not Lipschitz

continuous at dyadic angles, since gc 6= fc at βc . Cf. item 4 of Remark 9.3.) An

angle Θ /∈ [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ] may be periodic, while H(Θ) is preperiodic, or vice

versa (Example 9.2). In item 2, H is Hölder continuous with exponent q/p at Θ, if

q < p. It is Lipschitz continuous and linearly self similar, if q = p, and H′(Θ) = 0 if

q > p. The Hölder estimate at a rational angle in item 2 is obtained from tuning as

well, at least from one side, and this alternative proof extends to irrational tuned

angles.

Proof of Proposition 9.4:

1.: Suppose that Θ is p-periodic (under F) and that its orbit does not meet

(Θ−
1 , Θ−

3 ) ∪ (Θ+
1 , Θ+

3 ). Then Gn(Θ) = Fn(Θ) for n ∈ N, thus H(Θ) = Θ by

item 2 of Theorem 9.1, and Gp = Fp in a neighborhood (θ′, θ′′) of Θ. (Inequalities

like θ′ < Θ < θ′′ are meaningful for short intervals, or for a lift of the circle to R.)

We have Fp ◦H = H◦Gp = H◦Fp on (θ′, θ′′), which yields the linear self-similarity
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H(Θ + 2p(θ − Θ)) = Θ + 2p(H(θ) − Θ) for θ′ ≤ θ ≤ θ′′, thus the graph of H in

a neighborhood of (Θ, Θ) ∈ R2 is locally invariant under a scaling by 2p. Now

|H(θ)−Θ| / |θ−Θ| is bounded from above and below on (θ′, θ′′), since it is bounded

on (θ′, Θ− 2−p(Θ− θ′))∪ (Θ + 2−p(θ′′−Θ), θ′′), thus both H and H−1 are Lipschitz

continuous at Θ. Consider a preimage Θ′ of Θ, i.e. Fk(Θ′) = Θ. k may be increased

by multiples of p, and if it is chosen sufficiently large, there is a j with Gj(Θ′) = Θ.

Now Gj is Lipschitz continuous, and linear in one-sided neighborhoods of Θ′. We

have the representation H = F−j◦H◦Gj in a neighborhood of Θ′, when F−j denotes

a branch of (Fj)−1 with F−j(Θ) = Θ′. The results for H at Θ imply the statements

at Θ′.

2.: Choose a θ1 > Θ, such that Gq = Fp on [Θ, θ1], and set θ0 := Fp(θ1), θ̃0 :=

H(θ0) > Θ̃. Consider the sequences θn := Θ+2−np(θ0−Θ) and θ̃n := Θ̃+2−nq(θ̃0−Θ̃).

We have Fq ◦H = H ◦Gq = H ◦Fp on [Θ, θ1], and an induction shows θ̃n = H(θn)

for n ∈ N0 . By a scaling invariance with different scales 2p and 2q analogous to

item 1, |H(θ) − Θ̃| / |θ − Θ|q/p is bounded from above and below on (Θ, θ0] by the

same constants as on (θ1, θ0]. Alternatively we may employ the monotonicity of H,

which yields θ̃n+1 ≤ H(θ) ≤ θ̃n for θn+1 ≤ θ ≤ θn , and use the scaling properties

of the sequences. An analogous Hölder estimate is obtained for θ < Θ. Again, the

results extend to preimages Θ′ of Θ by the Lipschitz continuity of G.

3.: θ = r/2m with r odd is a preimage of 0 (under F) of exact order m, it is called

a dyadic angle of order m. θ̃ = H(θ) is a dyadic angle of order n, and we obtain
k̃v

kv
m ≤ n ≤ k̃w

kw
m analogous to the estimate of periods in Section 5.2. Consider

irrational angles θ1 6= θ2 with θ2 − θ1 /∈ Q and denote their images by θ̃i := H(θi).

Choose an n ∈ N with 2/2n < | θ̃2 − θ̃1| < 4/2n (the distance is measured in R,

and we have tacitly replaced H with a lift R → R). Now there are two dyadic

angles of order ≤ n between θ̃1 and θ̃2 , and thus there are at least two dyadic

angles of order ≤ nkv/k̃v between θ1 and θ2 . This implies | θ2− θ1| > 2−nkv/k̃v , thus

|H(θ2) −H(θ1)| ≤ 4 | θ2 − θ1|k̃v/kv . The Hölder estimate extends to θi ∈ S1 by a

density argument. Since H maps some angle of period kv to an angle of period k̃v ,

the Hölder exponent is sharp by item 2. The proof for H−1 is the same.

Figure 9.1: Left: the graph of HM = H : [11/56, 23/112] → [11/56, 23/112] for the
homeomorphism h : EM → EM of Section 1.2, small bumps are barely visible on this
scale. Middle: H : [0, 1] → [1/3, 4/3] for the Branner–Fagella homeomorphism h = φ3

12 :
M1/3 →M2/3 . Right: HM = H ◦ F : [1/7, 2/7] → [5/7, 6/7] for the same h.

150



A G-invariant measure µ on S1 is obtained from µ(A) := λ(H(A)) for all Lebesgue

measurable sets A ⊂ S1, where λ denotes the usual Lebesgue measure. We would

like to know if µ is absolutely continuous with respect to λ, i.e. if H : S1 → S1 is

absolutely continuous, or if h : EM → EM is absolutely continuous with respect to the

harmonic measure on ∂M. Since H and H̃ are continuous and strictly increasing,

they are differentiable with 0 ≤ H′(θ) < ∞ almost everywhere. We have H′ ∈ L1

and
∫ 1
0 H′(θ) dθ ≤ 1. Now H is absolutely continuous, iff it is weakly differentiable,

iff H(Θ) =
∫ Θ
0 H′(θ) dθ, and iff

∫ 1
0 H′(θ) dθ = 1. According to [Na, p. 307], these

properties hold, iff the “singular” set {H(θ) |H′(θ) = ∞} = {θ̃ | H̃′(θ̃) = 0} has

measure 0. Since the rational (or tuned) angles from the proof of item 2 form a null

set, we do not know if H is absolutely continuous.

H is quasi-symmetric, but these mappings can be quite singular concerning Lebesgue

measure, see e.g. [Roh]. In [SbSu], Shub and Sullivan show that the conjugation

between expanding C2-endomorphisms of the circle is not absolutely continuous

unless all multipliers of corresponding cycles are equal. We do not know if this

result extends to our piecewise linear mappings.

9.3 Combinatorial Approach to Surgery

Recall the assumptions from Section 5.1, where we have considered the correspon-

dence of sets EM ⊂ M and Ec ⊂ Kc , c ∈ EM and a piecewise defined mapping g(1)
c .

In Chapter 5 we constructed a homeomorphism h : EM → EM by quasi-conformal

surgery, and in Section 9.1 we obtained a circle homeomorphism H conjugating the

boundary value G of g(1)
c to F. The quasi-conformal mapping H : U ′ \D → DR2 \D

was a byproduct from the surgery, it was employed to show γM(H(θ)) = h(γM(θ))

for all external angles θ of EM . The corresponding result for h implied that H is com-

patible with angle tuning (in the sense of Theorem 9.1, item 6) and with Lavaurs’

equivalence relation ∼ of Section 3.6: the rational numbers with odd denominator

are denoted by Q1 , two angles in Q1/Z are equivalent if they belong to the same

root, and for θ′, θ′′ ∈ Q1∩ ([Θ−
1 , Θ−

3 ]∪ [Θ+
1 , Θ+

3 ]) we have θ′ ∼ θ′′ ⇔ H(θ′) ∼ H(θ′′),

since h maps roots to roots.

Now we want to reverse this procedure: given g(1)
c , the construction of G and H

is easy (items 1 to 3 of Theorem 9.1). We will give a combinatorial proof that

the related mapping HM is compatible with ∼ and with tuning, in particular it

defines a homeomorphism of the abstract Mandelbrot set S1/ ∼. Then we will

try to construct a homeomorphism h : M → M from HM without employing

quasi-conformal surgery, but relying on results about Hubbard trees (Section 3.6),

fibers (Section 3.5) and renormalization (Section 4.4). In a similar spirit, certain

homeomorphism groups of M and S1/∼ will be compared in Section 9.5.

Proposition 9.5 (Reconstruction of h from H)

1. Under the assumptions from Section 5.1, denote by G the piecewise linear bound-

ary value of g(1)
c on S1 = R/Z, and by H the unique orientation-preserving conjuga-

151



tion with H ◦G = F ◦H. Define HM(θ) := H(θ) for θ ∈ [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ] and

HM(θ) := θ otherwise. A combinatorial argument shows that HM is compatible with

Lavaurs’ equivalence relation ∼ on Q1/Z and with angle tuning on two intervals:

suppose that θ± = .u± ∈ [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ] are equivalent and H(.u±) = .v±.

Then H(.us1us2us3 . . .) = .vs1vs2vs3 . . . for all sequences (sn) of signs.

2. Suppose that HM : S1 → S1 is an orientation-preserving homeomorphism, com-

patible with ∼ on Q1/Z, and with angle tuning for all pairs of equivalent periodic

angles. Then there is a unique orientation-preserving bijection h : M→M, satis-

fying γM(HM(θ)) = h(γM(θ)) for θ ∈ Q and enjoying the following properties: h and

h−1 are continuous except possibly at the boundaries of non-trivial fibers. h is the

identity on the main cardioid and compatible with tuning, i.e. h(c0 ∗ x) = h(c0) ∗ x
for all centers c0 ∈M, c0 6= 0.

Proof: 1.: The dense set D of dyadic angles is completely invariant under F and

G, and every dyadic angle is mapped to 0 by some iterate of G. H is determined

recursively on D from H◦G = F◦H, since there is exactly one preimage of 0 (under

G) of exact order n + 1 between two consecutive preimages of orders ≤ n. By a

density argument, H extends to a homeomorphism of S1. Moreover H(θ) can be

computed from the algorithm of Theorem 9.1, item 2.

Consider θ± = .u± ∈ Q1 ∩ ([Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ]) with θ− ∼ θ+ , θ− < θ+ . There is

a root c∗ ∈ EM of some period p, with γM(θ−) = c∗ = γM(θ+), and c0 shall be the

corresponding center. In Section 5.2 we have dealt with periodic orbits of fc0 and

the combinatorially defined g(1)
c0

: there is a period q with k̃v

kv
p ≤ q ≤ k̃w

kw
p, such that

z0 := 0 is p-periodic under fc0 and q-periodic under g(1)
c0

. In neighborhoods of z0 = 0

and z1 = c0 , we have g(1)
c0

q = fp
c0

. Connect the orbit of z0 under g(1)
c0

by suitable arcs

within Kc0 , then the resulting tree together with the restriction g of g(1)
c0

defines a

Hubbard tree in the sense of Section 3.6. Consider an arc [z′, z′′] between adjacent

marked or branch points, then we can choose angles with z′ = γc0(θ
′), z′′ = γc0(θ

′′)

such that no other marked or branch point has an external angle in [θ′, θ′′]. If g

was not expanding, all iterates of g would be injective on the arc, and all iterates

of G would be injective on [θ′, θ′′], in contradiction to (Gk̃w)′(θ) ≥ 2kw according to

Section 5.2. Since the Hubbard tree is expanding, it is realized by a unique center

d0 corresponding to a root d∗ = γM(θ̃±), θ̃− < θ̃+ . The algorithm from Section 3.6

for obtaining the digits of θ̃± means that θ± are iterated with G, checking whether

the iterates belong to [0, 1/2) or [1/2, 1). Since this is precisely the algorithm for

the digits of H(θ±), we have H(θ±) = θ̃± , and θ̃− ∼ θ̃+ shows that H is compatible

with ∼ on [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ].

There are various ways to prove compatibility with angle tuning, without employing

surgery: one way is to consider a point z on the boundary of the Fatou component

of Kc0 containing c0 , such that the internal argument corresponds to the sequence

(sn) of signs, which shall not be eventually 1-periodic. The orbit of z under fc0 yields

the angle .us1us2us3 . . ., and the orbit under g(1)
c0

yields .vs1vs2vs3 . . . . Alternatively

we can recall the proof in Section 4.3 and consider eventually periodic sequences
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corresponding to postcritically finite parameters x, and note that the Hubbard trees

of g(1)
c0∗x and fd0∗x are isomorphic. In both cases a density argument yields the result

for arbitrary sequences.

By the assumptions from Section 5.1, the orbit of Θ ∈ {Θ−
1 , Θ−

3 , Θ+
1 , Θ+

3 } under G

coincides with its orbit under F, thus H(Θ) = Θ. Now HM is again an orientation-

preserving homeomorphism of S1, obviously compatible with ∼ on Q1/Z. It is

compatible with tuning by all pairs of equivalent angles θ± satisfying the following

property: the set of θ±-tuned angles is either contained in [Θ−
1 , Θ−

3 ] ∪ [Θ+
1 , Θ+

3 ] or

disjoint from it. If there is a tuned copy M′ such that its root is outside of EM but

M′ ∩ EM 6= ∅, the corresponding angles will be excluded here.

2.: Denote by M∗ ⊂ M the union of the closed main cardioid Ω0 and all tuned

copies of M. Now HM induces a mapping h∗ of roots by h∗(γM(θ)) := γM(HM(θ))

for θ ∈ Q1/Z. Extend it to a mapping of the corresponding centers and define

h∗ : M∗ →M∗ by the identity on Ω0 and by h∗(c0 ∗ x) := (h∗(c0)) ∗ x on maximal

tuned copies. Then h∗ is bijective and compatible with tuning on every tuned copy,

and it respects the partial order ≺ of hyperbolic components and the circular order

of branches at branch points. Although the restriction of h∗ to a tuned copy of M
is continuous, it is not clear if h∗ is continuous on M∗ . Compatibility with tuning

shows as well that for every hyperbolic component Ω 6= Ω0 , h∗ maps the union of

tuned copies in the p/q-sublimb onto itself. Moreover h∗ maps the set M∗ ∩Mp/q

into a limb of equal denominator, since q is the number of branches at the tuned copy

of −2. This set is mapped onto itself, since HM is orientation-preserving, and thus

h∗ is well defined on ∂Ω0 . By the Yoccoz inequality or the combinatorial proofs for

item 2 of Theorem 4.8, h∗ is continuous at the boundaries of hyperbolic components.

Recall that every non-trivial fiber of M would be contained in M∗ by Yoccoz’

Theorem 4.8. Suppose that c0 ∈ ∂M has a trivial fiber and (cn) is a sequence

of roots with cn → c0 . We claim that there is a d0 ∈ ∂M with trivial fiber and

dn := h∗(cn) → d0 . Assume that c0 does not belong to the boundary of a hyperbolic

component, since this case is obvious from continuity. First note that no cluster

point d0 of (dn) belongs to a non-trivial fiber F : otherwise there would be an angle

θ with c0 = γM(θ), such that d0 belongs to the impression of RM(HM(θ)), which

belongs to ∂F . Although θ may be infinitely renormalizable, this fact would yield the

contradiction that the impression of RM(θ) belongs to the non-trivial fiber h−1
∗ (F).

Moreover d0 does not belong to the boundary of a hyperbolic component, since h−1
∗

is continuous there. Now suppose that (dn) has two different cluster points d′0, d
′′
0

with trivial fibers, and choose subsequences d′n = h∗(c
′
n) → d′0 and d′′n = h∗(c

′′
n) → d′′0.

Then there is a root d∗ = h(c∗) such that d′0 and d′′0 belong to different connected

components of M \ {d∗}. The same is true eventually for (d′n) and (d′′n). Now h∗
preserves the partial order ≺ of hyperbolic components, thus (c′n) and (c′′n) belong

eventually to different connected components of M\{c∗}. Since both subsequences

converge to c0 , we have c0 = c∗ in contradiction to our assumption on c0 . This

proves the claim that dn → d0 for some d0 ∈ ∂M with trivial fiber. We have

d0 = γM(HM(θ)) for every external angle θ of c0 . Thus c0 ∈M∗ ⇔ d0 ∈M∗ , since
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HM is compatible with angle tuning.

Now h∗ is extended to h : M → M as follows: every c0 ∈ M \M∗ has a trivial

fiber. Choose a sequence of roots (cn) with cn → c0 , then there is a d0 ∈ M \M∗

with h∗(cn) → d0 , and we set h(c0) := d0 . The claim of the above shows as well

that d0 does not depend on the choice of (cn), thus h is well-defined. By a parallel

construction for h−1
∗ , h is a bijection.

h is continuous at the boundaries of hyperbolic components by the argument from

the first paragraph, and it is continuous in the interior of M. Consider a c0 ∈ ∂M
with trivial fiber, which does not belong to the boundary of a hyperbolic component.

d0 := h(c0) has the same properties. If h was not continuous at c0 , there would be

a sequence (cn) ⊂ M with cn → c0 and a d′0 ∈ M with dn := h(cn) → d′0 6= d0 .

Choose a root d∗ = h(c∗) separating d0 from d′0. Then c0 and cn , n ≥ n0 , are in

different connected components of M\{c∗}, in contradiction to cn → c0 6= c∗ . h−1 is

treated analogously. Note that this proof of continuity does not apply to boundaries

of non-trivial fibers. If c0 belongs to the boundary of some non-trivial fiber F , we

cannot assume that (cn) belongs to the same maximal tuned copy eventually, thus

compatibility with tuning does not yield continuity either.

h is determined uniquely by HM , since roots are dense in ∂M. We have the relation

h(γM(θ)) = γM(HM(θ)) whenever RM(θ) is landing at a parameter with trivial fiber.

This statement is weaker than item 5 of Theorem 9.1, which relied on an extension

of h to the exterior of M. Here we cannot exclude the possibility of some non-trivial

fiber F , such that RM(θ0) is landing at c0 ∈ ∂F , but RM(HM(θ0)) is accumulating

at ∂h(F) without landing, or landing at a d0 ∈ ∂h(F) with d0 6= h(c0).

Remark 9.6 (Interpretation and Generalizations)

1. Note that item 1 provides a simple method to obtain orientation-preserving

homeomorphisms of the abstract Mandelbrot set S1/∼ or D/'. In the construction

for item 1, the main work is done in the dynamic plane, and when HM is defined

as a restriction of H, item 2 continues the work in the parameter plane. It is not

mandatory to extend HM by the identity. HM could be defined piecewise by different

surgeries, e.g., and there would be no corresponding H for the dynamics. In the more

general case of a surgery satisfying Condition 1.1, HM is a restriction of H ◦ FN−1,

when g(1)
c = fN

c in a neighborhood of z = 0. (Here we consider mappings between

subsets of M.)

2. If there is a tuned copy M′ such that its root is outside of EM but M′ ∩ EM 6= ∅,
the mapping HM from item 1 does not satisfy the assumption of item 2, it is not

compatible with tuning by every pair of equivalent angles. But the proof can be

generalized to obtain h in this case as well, since the non-trivial fibers would be

contained in an infinite sequence of tuned copies and one copy is sufficient for the

proof. An example from Section 7.5 is the following one: if h0 is a homeomorphism

on an edge EM and c0 6= 0 is a center, then tuning with c0 defines a homeomorphism

on c0 ∗EM which extends to a homeomorphism h of M. It is compatible with tuning

by centers in c0 ∗EM but not with tuning by c0 , since it is not the identity on c0 ∗EM .
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Further examples are given in item 5 of remark 8.2 and in the proof of Theorem 8.1.

3. In [LaS, p.35], Lau and Schleicher show that the realization of an angled internal

address (Section 3.6) is independent of the numerators of the sublimbs, and obtain

homeomorphisms between abstract limbs of equal denominator. The mapping of

a limb permutes the branches at every α-type Misiurewicz point, the correspond-

ing homeomorphism of S1/∼ can be described by a bijection of Q1/Z preserving

∼ and ≺, but not by a ∼ -preserving homeomorphism of S1. In contrast to the

Branner–Fagella homeomorphisms, the corresponding mappings of M conserve pe-

riods of hyperbolic components and they do not have an extension to the exterior

(they are not compatible with the embedding of M into the plane). An alternative

construction for the Lau-Schleicher mappings is obtained from considering different

realizations of a Hubbard tree in the sense of [BnS].

4. Lau and Schleicher [LaS, p. 36] claimed that these homeomorphisms of D/ '
are compatible with tuning and define homeomorphisms between limbs of M, since

the non-tuned fibers are trivial. They realized afterwards that the argument was

incomplete [private communication by Schleicher]. This claim motivated item 2 of

Proposition 9.5, and the above proof extends to tuning-invariant homeomorphisms

between subsets of S1/∼. Thus without MLC it is not clear if the Lau-Schleicher

homeomorphisms between limbs ofM are continuous at the boundaries of non-trivial

fibers. This would follow if the diameters of branches behind α-type Misiurewicz

points approaching a non-trivial fiber would shrink to 0, cf. item 3 of Remark 9.12.

It is not obvious if they can be constructed by surgeries permuting the branches

at α-type Misiurewicz points, since the construction from Theorem 6.6 does not

work everywhere, and Riedl’s construction [R1] permutes subtrees contained in the

branches.

5. We do not know if one can prove in general, that the mapping h in item 2 of

Proposition 9.5 is a homeomorphism, see also the proof for item 3 of Proposition 9.11

and item 3 of Remark 9.12. Of course this can be shown by the techniques of

Chapter 5 if HM comes from surgery. It would be true in general (even without

the assumption that HM is compatible with tuning), if M was known to be locally

connected. Even in that case the techniques of Chapter 5 would not be obsolete: they

apply to more general situations and they are behind the theory of renormalization,

which is expected to contribute to a proof of MLC. The quasi-conformal mapping

ψc with Kc → Kh(c) is not obtained combinatorially. Moreover the quasi-conformal

extension of h to the exterior of EM relies on the approach of surgery, cf. also item 5

of Remark 5.6. We do not know if one can show without surgery, that HM of

item 1 is quasi-symmetric, which would yield a quasi-conformal mapping in the

exterior (assuming MLC). Certainly not every mapping HM according to item 2 is

quasi-symmetric, cf. the counterexample in item 4 of Proposition 9.10. The proof of

Proposition 9.5 appears to be shorter than the surgery in Sections 4.1–4.2 and 5.2–

5.6, but it relies on results about Hubbard trees, fibers and on the Yoccoz Theorem,

which have not been proved here.
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9.4 Homeomorphism Groups of M

H. Kriete has suggested to the author that the homeomorphisms on edges extend

to homeomorphisms of M. The question concerning the homeomorphism group

G of M was introduced by K. Keller [unpublished]. We shall consider groups of

analytic homeomorphisms below, they will be related to combinatorial surgery in

Section 9.5. Denote the supremum norm by ‖h1−h2‖∞ := max |h1(c)−h2(c)| , and

set d(h1, h2) := max( ‖h1 − h2‖∞ , ‖h−1
1 − h−1

2 ‖∞ ) . With this metric, G becomes

a complete metric space and a topological group, i.e. the mappings G × G → G,

(h1, h2) 7→ h1 ◦ h2 and G → G, h 7→ h−1 are continuous. Suppose that (hn) ⊂ G is a

Cauchy sequence in C0(M), it converges uniformly to some continuous h : M→M.

For c′ ∈ M set cn := h−1
n (c′), then every cluster point c of (cn) satisfies h(c) = c′,

thus h is surjective. But h need not be injective, a counter-example is constructed in

item 2 of Proposition 7.7. If however h is injective, then it is a homeomorphism and

h−1
n → h−1 in C0(M). These facts have the following meaning: if we had chosen

the different metric d̃(h1, h2) := ‖h1 − h2‖∞ , then the topology would be the same

and G would be a topological group as well, but it would be an incomplete metric

space. The same holds for the subgroups of analytic homeomorphisms.

Lemma 9.7 (Convergence in the Homeomorphism Group)

1. The group G of homeomorphisms M→M is a topological group. Suppose that

hn → h in G: then for every branch point c0 of M, there is an N with hn(c0) = h(c0)

for all n ≥ N and hn(A) = h(A) for every branch A of M at c0 and n ≥ N .

2. h ∈ G maps hyperbolic components to hyperbolic components and non-hyperbolic

components to non-hyperbolic ones. For interior components Ω1 and Ω2 , the set of

homeomorphisms of M mapping Ω1 to Ω2 is open. For hn → h and every interior

component Ω of M, there is an N with hn(Ω) = h(Ω) for n ≥ N .

Proof: 1. Denote the branches of M at c0 , i.e. the connected components of

M\ {c0}, by A1, . . . , Ak (by the Branch Theorem 3.13, c0 is a Misiurewicz point

and k is finite). Set c′0 := h(c0) and A′
i := h(Ai), 1 ≤ i ≤ k. Fix ci ∈ Ai , set

c′i := h(ci) and choose ε > 0 such that dist(c′i, A′
j) > ε for i 6= j. There is an N with

‖hn − h‖∞ < ε for n ≥ N . Then |hn(ci) − c′i| < ε, thus hn(ci) ∈ A′
i . Now hn(c0)

is the unique branch point between hn(c1), . . . , hn(ck), and c′0 is the unique branch

point between A′
1, . . . , A′

k , thus hn(c0) = c′0 and hn(Ai) = A′
i for n ≥ N .

2. Hyperbolicity is a topological property of interior components of M: if Ω is

hyperbolic, there is a countable family of pinching points in ∂Ω, and if Ω is non-

hyperbolic, then ∂Ω contains at most one pinching point. The former pinching points

are precisely the roots 6= 1/4, thus h ∈ G is mapping fibers to fibers. Consider the

set given by N := {h ∈ G |h(Ω1) = Ω2}. For h ∈ N fix a c0 ∈ Ω1 , then N contains

the ball {h′ ∈ G | d(h′, h) < dist(h(c0), ∂Ω2)}, thus N is an open neighborhood of

h. The convergence statement follows.

If EM is a parameter edge behind γM(10/63) and h is a homeomorphism on EM

according to Section 6.2, then h is extended by the identity to a homeomorphism
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h : M → M, since it is fixing the vertices of EM . Consider a strictly nested

sequence of parameter edges En and the associated homeomorphisms hn : M→M.

The intersection of these edges is a compact connected set and does not contain a

tuned copy of M, thus the edges converge to a point in the Hausdorff topology and

h±1
n → id uniformly. Another example for convergence in G is obtained when the

edges are mutually disjoint: set h̃n := hn ◦ . . . ◦h2 ◦h1 , then h̃n → h, where h is the

homeomorphism with h = hn on En and h = id in M\⋃ En . Lemma 9.7 could mean

that these examples are representative, i.e. when a homeomorphism is constructed

as a limit of simpler mappings, it can as well be defined piecewise. This is the case

for the construction from the proof of Theorem 6.6, item 4.

Definition 9.8 (Groups of Analytic Homeomorphisms)

1. Denote by G ′ the subgroup of homeomorphisms which are analytic in the interior

of M and given by compositions of multiplier maps on hyperbolic components. It is

a closed subgroup of G since analyticity is preserved under uniform convergence.

2. Now G ′′ shall denote the group of homeomorphisms which are analytic in the

interior and compatible with multiplier maps, and which preserve the cyclic order at

branch points. G ′′ is a closed subgroup of G ′ and G by Lemma 9.7.

Remark 9.9 (Homeomorphisms of M)

1. There is no classification of all possible homeomorphisms of M. See item 5 of

Remark 5.3 for a discussion of some known techniques. G is a very large group, since

the mappings are quite arbitrary on interior components of M. In particular G is

not compact, since it contains the group of homeomorphisms of a disk that extend

to the identity on the boundary. We want to define a subgroup or factor group of

G which contains only non-trivial homeomorphisms but which is still large enough

to be non-compact. It is not interesting to distinguish homeomorphisms coinciding

on ∂M, thus we might consider the factor group G/{h ∈ G |h|∂M = id} or the

homeomorphism group of ∂M instead. But we shall concentrate on the groups of

analytic homeomorphisms, since these homeomorphisms are obtained from surgery

and from combinatorial methods that are compatible with tuning. We will see

in Proposition 9.10, that G ′ and G ′′ are not compact, moreover they are totally

disconnected and their cardinality is |NN| .
2. The same results would be obtained for the homeomorphism group of ∂M. We

do not know if the homeomorphisms of ∂M which are orientation-preserving at the

boundaries of interior components are obtained by restrictions of analytic homeo-

morphisms: when there was a non-hyperbolic component Ω, a homeomorphism h

of ∂M might have no extension to Ω, or only non-analytic extensions. When Ω

is a hyperbolic component and a homeomorphism between sublimbs of Ω is con-

structed piecewise by surgery, it will preserve the denominators of the sublimbs.

Thus orientation-preserving homeomorphisms of ∂M constructed in this way will

be compatible with internal arguments and extend to hyperbolic components as a

composition of multiplier maps. We do not know if there might be a more ab-

stract construction of a homeomorphism, which is not preserving the denominators
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of sublimbs.

3. Every h ∈ G ′ is the identity on the main cardioid, thus the Branner–Fagella

homeomorphisms between limbs of equal denominator (Section 4.5) do not extend to

mappings in G ′. There is no known extension to an orientation-preserving mapping

in G. The Branner–Douady homeomorphism ΦA : M1/2 → T ⊂ M1/3 and the

various kinds of renormalization do not extend to homeomorphisms in G. The Riedl

homeomorphisms between subtrees of branches behind a Misiurewicz point do not

extend to homeomorphisms in G ′′. To our knowledge the homeomorphisms on edges

from Sections 1.2, 6.2 and 7.4 provide the first examples of mappings in G ′′. |G ′′|
and items 2 and 4 of Proposition 9.10 are obtained by employing homeomorphisms

on edges. Further examples of homeomorphisms in G ′′ are the piecewise defined

mappings from Proposition 7.7 and the surgeries from Sections 7.5, 8.2 and 8.3. All

of these mappings shall be extended by the identity to the remaining parts of M.

4. G ′ contains in addition certain compositions of Branner–Fagella homeomorphisms

and Lau-Schleicher homeomorphisms (when the latter are proved to be homeomor-

phisms, cf. items 3 and 4 of Remark 9.6), such that some limb is mapped onto itself

but branches at all α-type Misiurewicz points are permuted. Further examples are

constructed piecewise in Theorem 6.6. They show that G ′′ is not a normal subgroup

of G ′. Assuming MLC, mappings in G ′ can be obtained piecewise from Riedl homeo-

morphisms between subtrees in branches, see the remarks in [R1, Section 5.1.4].

5. Homeomorphisms constructed by surgery according to Section 5.3 are Hölder

continuous at Misiurewicz points in EM and Lipschitz continuous at the vertices a

and b, but item 4 of Proposition 7.7 provides piecewise defined homeomorphisms

h ∈ G ′′ on an edge, which are not Lipschitz continuous or even Hölder continuous at

a. h ∈ G maps branch points to branch points, but Misiurewicz points with one or

two external angles may be mapped to parameters that are not Misiurewicz points:

according to item 4 of Theorem 6.6 there is an h ∈ G ′ mapping some Misiurewicz

point with one external angle to the landing point of an irrational parameter ray.

And item 3 of Proposition 7.7 yields an h ∈ G ′′ mapping a Misiurewicz point with

two external angles to a parameter with irrational external angles.

6. In addition G contains complex conjugation and the reflections of limbs according

to Section 4.5. Mappings in G \ G ′ could be obtained as well by reflecting the

main cardioid and employing Branner–Fagella homeomorphisms between all pairs

of p/q and (q − p)/q limbs. An analogous construction of reflecting any hyperbolic

component is possible by constructing Lau-Schleicher homeomorphisms between all

pairs of p/q and (q−p)/q sublimbs, provided the proof can be completed (cf. item 4

of Remark 9.6). These mappings would show that G ′′ and G ′ are not normal in G.

Proposition 9.10 (Groups of Analytic Homeomorphisms)

The closed subgroups G ′′ ≤ G ′ ≤ G of the homeomorphism group of M according to

Definition 9.8 enjoy the following properties:

1. G ′ and G ′′ have cardinality |NN| , they are totally disconnected.

2. G ′ and G′′ are not compact.

158



3. If M was locally connected, then every h ∈ G ′′ would have an extension to a

homeomorphism of C.

4. There is an h ∈ G ′′, which extends to a homeomorphism of C, but no extension

is quasi-conformal in the exterior of M.

Proof: 1.: Take a countable family of disjoint parameter edges En and associated

homeomorphisms hn . For each s = (s1, s2, . . .) ⊂ Z define hs by hs = hsn
n on En ,

extended by the identity to the remaining parts of M. The mappings hs form a

free Abelian subgroup of G ′′ with cardinality |NN|. On the other hand, h ∈ G ′ is

determined uniquely by its action on the countable family of centers, which are

dense at ∂M, and we have |NN| ≤ |G ′′| ≤ |G ′| ≤ |NN| .
If h1, h2 ∈ G ′ with h1 6= h2 , there is a hyperbolic component Ω with h1(Ω) 6= h2(Ω).

By Lemma 9.7, N := {h ∈ G ′ |h(Ω) = h1(Ω)} is an open neighborhood of h1 , and

G ′ \ N =
⋃{h ∈ G ′ |h(Ω) = Ω′} is an open neighborhood of h2 , where the union

is taken over all hyperbolic components Ω′ 6= h1(Ω). Thus h1 and h2 belong to

different connected components, and G ′ is totally disconnected.

2.: Consider the homeomorphism h : EM → EM of Section 1.2, which is expanding

at a = γM(9/56) and contracting at b = γM(29/112), extend it by the identity

to a homeomorphism in G ′′. By item 5 of Theorem 5.4, the iterates of h satisfy

hn(a) = a and hn(c) → b for all c ∈ EM \ {a}, thus the pointwise limit of (hn) is not

a homeomorphism, the sequence does not contain a Cauchy subsequence, and none

of the groups is sequentially compact.

3.: h ∈ G ′′ defines a homeomorphism H : Q1/Z → Q1/Z, such that RM(H(θ))

is landing at h(γM(θ)) through the appropriate access, cf. Section 9.5. There is a

unique extension to a homeomorphism H : S1 → S1, and h would be extended to

C\M by mapping RM(θ) to RM(H(θ)) equipotentially, as in item 4 of Remark 9.3.

4.: Consider a sequence of disjoint edges En and associated homeomorphisms hn .

For sufficiently large kn , hkn
n decreases the period of some hyperbolic component

by a factor at least of n, and the Hölder exponent of the associated Hkn
n on the

appropriate intervals is at most 1/n by Proposition 9.4. Define h piecewise by hkn
n

on En . We may assume that each hn extends to the strip around En and is the

identity on the bounding external rays, thus h extends to a homeomorphism of

C. But H is not Hölder continuous, thus no extension of h is quasi-conformal in

the exterior of M (H is the boundary value of ΦM ◦ h ◦ Φ−1
M ). A more involved

construction was given in item 4 of Proposition 7.7.

9.5 Homeomorphism Groups of S1/∼

Consider again the group G ′′ of analytic, orientation-preserving homeomorphisms

respecting internal coordinates, and denote the rational numbers with odd de-

nominator by Q1 . Every h ∈ G ′′ induces an orientation-preserving bijection

H : Q1/Z → Q1/Z that is compatible with Lavaurs’ equivalence relation ∼ of rays

159



landing together at the same root (Section 3.6). H extends to a homeomorphism

H : S1 → S1, which is compatible with the closed equivalence relation ∼ on S1. We

shall define a corresponding homeomorphism group H′′ and consider the reconstruc-

tion of h ∈ G ′′ from H ∈ H′′, building on the techniques from Section 9.3, where we

almost reconstructed the homeomorphisms h of Chapter 5 from HM . Items 1 and 2

of the following proposition are obvious from well-known results on the abstract

Mandelbrot set, and item 3 is a reformulation for item 2 of Proposition 9.5. It was

motivated by a remark in [LaS], cf. item 4 of Remark 9.6.

Proposition 9.11 (Correspondence of h and H)

H′′ shall be the group of orientation-preserving homeomorphisms H : S1 → S1 that

are compatible with Lavaurs’ equivalence relation ∼ on Q1/Z and preserve internal

arguments. H′′ is a complete metric space and a non-compact topological group with

d(H1, H2) := max( |H1 −H2|∞ , |H−1
1 −H−1

2 |∞) .

1. For h ∈ G ′′ there is a unique H ∈ H′′ such that H(θ±) are the external angles of

h(c), when θ± are the external angles of a root c. Now φ : h 7→ H defines a mapping

φ : G ′′ → H′′. It is an injective group homomorphism and continuous.

2. If M was locally connected, then φ : G ′′ → H′′ would be a group isomorphism and

a homeomorphism. H = φ(h) would satisfy h ◦ γM = γM ◦H on S1.

3. Consider the subgroup H′′
∗ ≤ H′′ of circle homeomorphisms which are compatible

with angle tuning. G ′′∗ shall denote the group of orientation-preserving bijections

h : M→M, which are the identity on the main cardioid, compatible with parameter

tuning, and such that both h and h−1 are continuous except possibly at the boundaries

of non-trivial fibers (Section 3.5). The mapping φ∗ : G ′′∗ → H′′
∗ is defined analogously

to item 1. Then φ∗ is a continuous group isomorphism.

Compatibility with internal arguments is defined as follows: when RM(θ′±) bound

the p/q-subwake of the hyperbolic component at γM(θ±), thenRM(H(θ′±)) bound the

p/q-subwake of the hyperbolic component at γM(H(θ±)). (Maybe this assumption

on H ∈ H′′ is redundant, cf. item 2 of Remark 9.9.) Compatibility with angle tuning

means H(.us1us2us3 . . .) = .vs1vs2vs3 . . . for all sequences (sn) of signs, when .u± are

the external angles of some root c1 6= 1/4 and H(.u±) = .v± . Compatibility with

parameter tuning means h(c0∗x) = h(c0)∗x for all centers c0 ∈M, c0 6= 0. It implies

that h is analytic in the interior of M and compatible with internal arguments.

H ∈ H′′
∗ is compatible with the closed equivalence relation ∼ on S1. Every homeo-

morphism H : S1 → S1 with this property satisfies H(Q1/Z) = Q1/Z, but it need

not satisfy H(Q/Z) = Q/Z, cf. item 5 of Remark 9.9.

Proof of Proposition 9.11: Convergence in H′′ satisfies the analog of Lemma 9.7.

The same example as in the proof of Proposition 9.10, item 2 shows that H′′ is not

compact.

1. Fix h ∈ G ′′ and consider the external angles θ− < θ+ of some root c, then

H(θ−) < H(θ+) shall be the external angles of h(c). This defines a bijection H :

Q1/Z → Q1/Z, which is compatible with ∼ and with internal arguments. Given
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two roots γM(θ±) and γM(θ′±), we may assume that either θ− < θ′− < θ′+ < θ+ or

θ− < θ+ < θ′− < θ′+. In the first case H is orientation-preserving because h preserves

the partial order ≺ of hyperbolic components, and in the second case the Branch

Theorem 3.13 implies that H is orientation-preserving, since h is compatible with

internal coordinates and with the cyclic order at branch points. Thus H has a unique

extension to a homeomorphism of S1, and φ is a well-defined group homomorphism.

Suppose that h ∈ G ′′ and φ(h) = id, then h is the identity on the set of roots. It is

the identity on ∂M because roots are dense, and it is the identity on the interior of

M because it is analytic there. Thus h = id, and φ is injective. Now suppose that

hn → h in G ′′ and set Hn := φ(hn), H := φ(h). For an ε > 0, choose a p ∈ N with
1

2p − 1
< ε. According to Lemma 9.7, there is an N with hn(Ω) = h(Ω) for n ≥ N

and every hyperbolic component Ω, such that the period of h(Ω) divides p. Thus

Hn(θ) = H(θ) for H(θ) =
k

2p − 1
, 0 ≤ k < 2p − 1, and together with the analogous

estimate for the inverse mappings we obtain d(Hn, H) < ε.

2. Assuming MLC, γM : S1 → ∂M is continuous and surjective, and every interior

component of M is hyperbolic. Any given H ∈ H′′ is compatible with the closed

equivalence relation ∼ on S1. Thus h : ∂M → ∂M with h(γM(θ)) := γM(H(θ)),

θ ∈ S1, is well-defined: when c ∈ ∂M has more than one external angle, their images

under H are external angles of a common point. If cn → c in ∂M, there are angles

θn with cn = γM(θn), and every cluster point of (θn) is an external angle of c. The

continuity of H and γM implies h(cn) → h(c). Now h−1 is constructed from H−1

in the same way, thus h : ∂M→ ∂M is a homeomorphism. It is compatible with

internal coordinates on the boundaries of hyperbolic components, and it is extended

by compositions of multiplier maps to h : M → M. We have h ∈ G ′′, φ(h) = H,

and h is unique by item 1. Thus φ is a group isomorphism.

Suppose that Hn → H in H′′, set hn := φ−1(Hn) and h := φ−1(H). For ε > 0

there is a δ > 0 such that |γM(θ′) − γM(θ′′)| < ε for |θ′ − θ′′| < δ. Choose an N

with |Hn(θ) −H(θ)| < δ for θ ∈ S1, n ≥ N . Then |hn(c) − h(c)| < ε for n ≥ N

and c ∈ ∂M. By the Maximum Principle this estimate extends to c ∈ M. The

inverse mappings are treated analogously, thus hn → h in G ′′, and φ−1 is continuous.

According to item 1, φ is continuous even without the assumption of MLC.

3. As in item 1 we obtain that φ∗ is a continuous injective group homomorphism.

h ∈ G ′′∗ is reconstructed from a given H ∈ H′′
∗ by item 2 of Proposition 9.5, setting

HM := H. We want to compare the situation to item 2: there is a set Θ ⊂ S1 such

that RM(θ) is accumulating at a non-trivial fiber for θ ∈ Θ, and γM(θ) is defined

and continuous for θ ∈ S1 \ Θ. Θ is invariant under tuning and a proper subset

of the set of infinitely renormalizable angles, and we have MLC ⇔ Θ = ∅. Now

Θ is invariant under H ∈ H′′
∗ , but continuity of h at the boundaries of non-trivial

fibers cannot be shown by employing γM : although γM(θ) might be defined for some

θ ∈ Θ, γM would not be continuous there.
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Remark 9.12 (Interpretation and Generalizations)

1. Analogous results hold for homeomorphisms h : EM → ẼM between subsets of M,

or of S1/∼ respectively, which need not extend to homeomorphisms of the whole

set. Thus φ and φ∗ extend to functors between categories of certain subsets of M
and S1/∼, with properties analogous to Proposition 9.11. According to item 2 of

Remark 9.6 there are interesting homeomorphisms which are not compatible with

tuning by every center. The statements and technique for item 3 of Proposition 9.11

extend to these mappings, since the non-trivial fibers would be contained in an

infinite sequence of tuned copies and one copy is sufficient for the proof.

2. According to the remarks in Section 3.6, there is a continuous projection

∂M → S1/ ∼, which would be a homeomorphism if M was locally connected.

Since h ∈ G maps non-trivial fibers to non-trivial fibers, these results imply items 1

and 2 of Proposition 9.11. Our proof does not rely on properties of fibers or the

abstract Mandelbrot set, only on Carathéodory’s Theorem 2.1 and the Branch The-

orem 3.13. We concentrate on the case of orientation-preserving homeomorphisms,

because these arise in surgery, and because it is convenient to work with special

homeomorphisms of S1. But analogous results could be obtained for bijections

of (Q1/Z)/ ∼ respecting the partial order ≺ of hyperbolic components. For the

Lau-Schleicher homeomorphisms h this means that MLC implies h ∈ G ′, and the

compatibility with tuning only yields h ∈ G ′∗ , cf. items 3 and 4 of Remark 9.6.

3. If M was known to be locally connected, φ∗ would be a restriction of φ and item 3

of Proposition 9.11 would be a trivial consequence of item 2. Without MLC, we do

not know if one can prove that all mappings H ∈ H′′
∗ induce homeomorphisms h of

M. If M was known to be not locally connected, there would be non-trivial fibers

F , contained in maximal tuned copies M′. Consider sequences of tuned β-type

Misiurewicz points approaching ∂F : if the diameter of their decorations tended to

0, every h ∈ G ′′∗ would be a homeomorphism. If not, it might be possible to construct

a H ∈ H′′
∗ such that the corresponding h ∈ G ′′∗ is not a homeomorphism. It cannot be

turned into a homeomorphism by modifying it on non-trivial fibers, thus φ would be

an embedding and not surjective, and G ′′ would be isomorphic to a proper subgroup

of H′′. Moreover, if there was a non-hyperbolic component of M, there might be a

homeomorphism of ∂M that does not extend to a homeomorphism of M, or such

that there is no analytic extension.
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Norm Sup. (4) 16, 193–217 (1983).

[Mu1] C. McMullen, Automorphisms of rational maps, in: Holomorphic functions and
moduli I, Publ. MSRI 10, 31–60 (1988).

[Mu2] C. T. McMullen, Frontiers in complex dynamics, Bull. Am. Math. Soc. 31, 155–
172 (1994).

[Mu3] C. T. McMullen, Complex Dynamics and Renormalization, Annals of Mathe-
matics Studies. 135, Princeton, NJ: Univ. Press (1995).

[Mu4] C. T. McMullen, The Mandelbrot set is universal, in [T3] (2000).

[Mst] N. Metropolis, M. I. Stein, P. R. Stein, On Finite Limit Sets for Transformations
of the Unit Interval, J. Comb. Theory 15 A, 25–44 (1973).

166



[Mi1] J. Milnor, Self-similarity and hairiness in the Mandelbrot set, in: Computers in
Geometry and Topology, M. C. Tangora ed., Lecture Notes in Pure and Applied
Mathematics, Marcel Dekker 1989.

[Mi2] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, IMS-
Preprint 90-5 (1990), Vieweg 1999.

[Mi3] J. Milnor, Periodic Orbits, External Rays and the Mandelbrot Set: An Exposi-
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Frequently Used Symbols

Dr, D, D, S1 = R/Z open disk, unit disk, closed unit disk, circle

�, O(. . .), o(. . .) estimates 2.1

dĈ\K, dC\K hyperbolic metric 2.1

µ(z) = ∂ψ/∂ψ Beltrami-coefficient, ellipse field 2.3

fn
c (z) n-th iterate of fc(z) = z2 + c 3.1

αc , βc fixed points of fc 3.1, 3.3

Kc, Jc filled-in Julia set and Julia set of fc 3.1

M Mandelbrot set 3.2

c = γΩ(t) bifurcation point at internal argument t 3.3

Mp/q limb attached to γΩ0(p/q) 3.3

Φc(z) Boettcher conjugating function 3.1

Rc(θ), z = γc(θ) dynamic ray and landing point 3.1

ΦM(c) Riemann mapping C \M → C \ D 3.2

RM(θ), c = γM(θ) parameter ray and landing point 3.2

Gc(z), GM(c) Green’s function of Kc and M 3.1, 3.2

≺ partial order of hyperbolic components 3.4

θ− ∼ θ+ Lavaurs’ equivalence relation on Q1/Z 3.6

c ∗ x tuning 4.3

g(1)
c = fc ◦ ηc, gc : Uc → U ′

c piecewise defined mappings 5.1, 5.2

ψc : U ′
c → B′

d hybrid equivalence between gc and fd 5.3

ξc conjugation from gc to F 5.4

g̃d, ψ̃d, h̃ inverse constructions 5.5

h : EM → EM , PM → P̃M homeomorphism, extension 5.3

F (z) = z2, G, G̃, H corresponding mappings in C \ D 5.4

F(θ) = 2θmod 1, G, G̃, H boundary values on S1 9.1

Vc, Wc, Ṽc, W̃c subsets of the dynamic plane 5.1

Θ±
i , Θ̃±

2 related angles 5.1

∂U, ∂U ′ correspond to ∂Uc, ∂U
′
c by Φc 5.2

Sc(θ), S(θ), Ŝ(θ) sectors in various coordinates 5.2

Tc =
⋃
Tc(Θ

±
i ), T =

⋃
T (Θ±

i ) sectors where gc or G is not analytic 5.2

En
c (w−, w+), En

M(w−, w+) dynamic edge, parameter edge 6.1

φ±, ψ± bounding angles at an edge 6.1

Fn
c (u−, u+), Fn

M(u−, u+) dynamic frame, parameter frame 7.1

θ±i bounding angles at a frame 7.1

G, G ′, G ′′, G ′′∗ , H′′, H ′′
∗ homeomorphism groups 9.4, 9.5
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Index of Definitions

abstract Mandelbrot set 53
angled internal address 51
attracting cycle 33
behind a pinching point 45
Beltrami coefficient 30
bifurcation 40
Boettcher conjugation 36
bounding angle 97, 98, 107, 108
branch point 46
Branner–Douady homeomorphism 71
Branner–Fagella homeomorphisms 72
center 40
characteristic angle/ray 47
characteristic point 45, 47
combinatorial arc 47
combinatorial class 53
Cremer cycle 33
critical point, critical value 35
dilatation bound 28
dynamic edge 97
dynamic frame 107
dynamic ray 37
edge 97, 98
equipotential line 37, 41
external angle 27, 37, 41
external ray 27, 37, 41
Fatou set 33
fiber 50
filled-in Julia set 35, 56
fixed points 35
frame 107, 108
full set 25
Green’s function 26, 36, 40
Hausdorff–Chabauty distance 134
holomorphic motion 32
Hubbard tree 52
hybrid equivalence/equivalent 56
hyperbolic component 45
hyperbolic mapping 34
hyperbolic metric 26
internal address 51
invariant line field 54
Julia set 33, 56
kneading sequence 51
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Koenigs conjugation 132
landing of an external ray 27, 37, 41
Lau–Schleicher homeomorphisms 155
Lavaurs’ equivalence relation 53
limb 45
little Julia set, little Mandelbrot set 66
locally connected set 25
main cardioid 40
Mandelbrot set 40
Misiurewicz point/mapping 40
MLC conjecture 67
modulus of a quadrilateral/annulus 28
multiplier of a cycle, multiplier map 33, 45
narrow hyperbolic component 126
narrow Misiurewicz point 103
non-hyperbolic component 54
para-puzzle-piece 49
parabolic cycle 33
parameter edge 98
parameter frame 108
parameter ray 41
periodic point 33
pinching point 45
postcritically finite mapping/parameter 48
pre-characteristic point 49
preperiodic point 33
primitive hyperbolic component 43
proper mapping 56
puzzle-piece 49
quadratic-like mapping 56
quasi-arc, quasi-circle 30
quasi-conformally equivalent, q.c. equivalence 56
quasi-conformal/quasi-regular mapping 28
quasi-symmetric mapping 29
renormalization 63
Riedl homeomorphisms 73
root 40
satellite hyperbolic component 43
sector 81
Siegel disk 33
sublimb, subwake 45, 47
superattracting cycle 33
tight Misiurewicz point 103
tuning 66
vertex 97, 98, 107, 108
wake 45, 47
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