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Abstract

There is an alternative construction of mating, when at least one polynomial
is preperiodic: shift the infinite critical value of the other polynomial to a
preperiodic point. Taking homotopic rays, it gives simple examples of shared
matings. Sequences with unbounded multiplicity of sharing, and slowly grow-
ing preperiod and period, are obtained both in the Chebyshev family and for
Airplane matings. Using preperiodic polynomials with identifications between
the two critical orbits, an example of mating discontinuity is described as well.

1 Introduction

In general both Kp and Kq contain pinching points and branch points with several
rays landing together, so there are ray-equivalence classes consisting of subsequent
rays connecting points in ∂Kp and ∂Kq alternately. For rational angles, the landing
pattern is understood combinatorially, and the identifications of periodic and prepe-
riodic points can be determined. Consider the example of the 5-periodic p with the
external angle 11/31 and preperiodic q with angle 19/62 in Figure 1: since q belongs
to the 2/5-limb of M, there are five branches of Kq and five external rays at the
fixed point αq , which are permuted with rotation number 2/5 by Q. Now p is chosen
such that the complex conjugate angles land pairwise with another 5-cycle at the
Fatou basins; the rays of Q corresponding to the latter angles land at endpoints,
including the iterate Q(q) of the critical value. So in the topological mating and in
the geometric mating f ∼= P

∐
Q, the point Q(q) is identified both with αq and with

a repelling 5-cycle of P . Now the critical point 0 of f is 5-periodic, while f 2(∞) is
fixed. The five components of the immediate attracting basin all touch at this fixed
point with rotation number 2/5, although they had disjoint closures in Kp .

Simple examples of shared matings and of mating discontinuity are obtained in
Section ??. The rational map f above belongs to the same one-parameter family
as matings with the Chebyshev polynomial, but it is not of this form. There are
five other representations as a mating: take the Rabbit with rotation number 2/5
for P and suitable preperiodic parameters q1 , . . . , q5 for Q, which are related to
the angles at −αp . More generally, we have P

∐
Qi = P

∐
Qj for all p in the small

satellite Mandelbrot set, since the rays at −αp are homotopic with respect to the
postcritical set and so the encaptures are combinatorially equivalent. Taking higher
rotation numbers gives shared matings with larger multiplicity. While it is obvious
that a hyperbolic rational map has only a finite number of representations as a
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Figure 1: A formal mating g = P t Q. The Julia set Kp for the five-periodic center

p corresponding to γM(11/31) is shown on the right; the Misiurewicz Julia set Kq with

q = γM(19/62) in the left image is rotated. (This does not change the set itself, but its

external rays.) The ray connections and dynamics are discussed in the main text.

There are various ways to visualize the sets ϕ0(Kp), ϕ∞(Kq) ⊂ Ĉ in the plane C : instead

of Kq coming from∞, we may rotate the sphere such that Kq is translated above or below

Kp , or to save space here, translated to the left or right and rotated.

In any case, ϕ0(Rp(θ)) is connected with ϕ∞(Rq(−θ)); three connections are indicated

between the two images. When discussing the combinatorics of a ray-equivalence class, we

may avoid conjugation of several angles by assuming that Rp(θ) connects to Rq(θ), but

to draw these rays without crossing, you would need to stack two sheets of paper.

mating, this is not known in general when one or both of the critical points are
preperiodic. Finiteness is shown here for Chebyshev maps with one critical point
periodic, and in [16] for Lattès maps. Examples with arbitrarily high multiplicity
are obtained as well for matings of the Airplane with preperiodic polynomials; here
preperiod and period are of the same order as the multiplicity, in contrast to the
hyperbolic examples by Rees [32], where the period grows exponentially. — Simple
ray connections can be used to define preperiodic matings with f(0) = ∞. This
property is lost when preperiodic parameters converge to a parabolic parameter,
confirming that mating is not jointly continuous. The mechanism is similar to
geometrically infinite examples by Blé–Valdez–Epstein [3, 11], but here all maps are
geometrically finite and matability does not require special arguments.
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I am grateful to the mathematics department of Warwick University for their hos-
pitality. This research was partially supported by Dierk Schleicher’s ERC grant
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2.1 Polynomials

Proposition 2.1 (Douady Magic Formula, Blé)
Suppose θ ∈ [0, 1/3] is an external angle of the main cardioid, then Θ = 1/2+θ/4 ∈
[1/2, 7/12] is an external angle of the real axis M∩ R.

Proof: According to [7], the orbit of θ under doubling is confined to [θ/2 , (1 +
θ)/2]. Now taking a suitable preimage shows that the orbits of θ and Θ never enter
((θ+ 1)/4, (θ+ 2)/4) ⊃ (1−Θ, Θ), so Θ is combinatorially real: it defines a unique
real parameter c by approximation, and the parameter ray RM(Θ) accumulates at
a fiber [33] intersecting the real line in c. Blé [2] has shown that fc is strongly
recurrent but not renormalizable, so the fiber is trivial and the ray actually lands,
c = γM(Θ).

2.2 Matings

Thurston, essential equivalence

2.3 Ray connections

2.4 Encaptures and matings

Theorem 2.2 (Matings as encaptures)
Suppose P is postcritically finite and θ is preperiodic, such that q = γM(−θ) is not
in the conjugate limb and z1 = γp(θ) ∈ ∂Kp is not postcritical. Then the encapture
gθ = ϕθ ◦ P along Rp(θ) is combinatorially equivalent or essentially equivalent to
the geometric mating f defined by P

∐
Q.

3 Shared matings

Mating provides a partial map from M×M to the moduli space of quadratic rational
maps. This map is neither surjective, injective, nor continuous. The characterization of
matings in terms of equators and pseudo-equators by Thurston–Wittner and Meyer is
discussed in [20]. Old and new examples of shared matings are described in Section 3,
and particular sequences with arbitrarily high multiplicity are obtained in Sections 4
and 5. Epstein has given various examples of mating discontinuity, which are described
in Section 6, and a simple new construction is presented.

A shared mating is a geometric mating with different representations, P1
∐
Q1 '

f ' P2
∐
Q2 with P1 6= P2 or Q1 6= Q2 . There are the following examples of shared

matings, and techniques for constructing them:

• Wittner [39] introduced the notion of shared matings and discussed them for V3
in particular. A simple example is given by the geometric mating of Airplane
and Rabbit, which is linear conjugate to the geometric mating of Rabbit and
Airplane, A

∐
R ' R

∐
A. (Moreover, it is conjugate to a symmetric map,

which is not a self-mating.) Since the two polynomials are interchanged, this
example is called the Wittner flip. It can be explained by finding two different
equators, which has a few generalizations:
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• Exall [12] constructs pairs of polynomials P, Q with P
∐
R ' Q

∐
A from a

second equator. Using symbolic dynamics, this can be done algorithmically.

• Rees [32] uses symbolic dynamics again to obtain unboundedly shared Airplane
matings. The period grows exponentially with the multiplicity.

• Denote the rabbit of rotation number k/n by R. There are n − 2 primitive
hyperbolic polynomials Q of period n, such that Q has a characteristic angle
from the cycle of αr . Then the rational map f ∼= R

∐
Q has a cluster cycle:

both n-cycles of Fatou components have a common boundary point, which
is a fixed point corresponding to αr . Sharland [35, 36] has shown that f is
determined uniquely by the rotation number and the relative displacement of
the critical orbits; f has precisely two representations as a mating, which are
of the form f ∼= R

∐
Q ' P

∐
R.

When f is a Lattès map, different representations are known except in the case
d) of 1/6

∐
1/6. The Shishikura Algorithm can be used to identify the particular

map f in the case of type (2, 2, 2, 2), and we have only one quadratic map of type
(2, 4, 4). Combinatorial arguments show that there are basically nine, respectively
three, matings of these types; see Sections 3 and 5 in [16].

• Case a) of type (2, 2, 2, 2) is given by 1/12
∐

5/12 ' −1/12
∐

5/12.

• Case b) of type (2, 2, 2, 2) is 1/4
∐

1/4 ' 23/28
∐

13/28 ' 13/28
∐

23/28 '
53/60

∐
29/60 ' 29/60

∐
53/60.

• Case c) of type (2, 2, 2, 2) is 1/6
∐

5/14 ' 5/14
∐

1/6 ' 3/14
∐

3/14 '
3/14

∐
1/2 ' 1/2

∐
3/14 ' 5/6

∐
1/2 ' 1/2

∐
5/6.

• Type (2, 4, 4) is given by ±1/4
∐

1/2 ' 5/12
∐±1/6 ' 13/28

∐±3/14.

The following technique for producing shared matings is based on the representation
of matings as repelling-preperiodic captures according to Theorem 2.2.

Proposition 3.1 (Shared matings from encaptures)
Suppose P (z) = z2 + p is geometrically finite, with p 6= −2, p 6= 1/4, and p not in
the main cardioid. There are countably many pairs of preperiodic angles θ1 , θ2 such
that: the corresponding dynamic rays land together at a preperiodic pinching point
z1 ∈ ∂Kp , which is not postcritical and not in the same branch at αp as p, and the
branch or branches of z1 between these rays do not contain postcritical points of P
or iterates of z1. Then we have P

∐
Q1 ' P

∐
Q2 with qi = γM(−θi). Moreover,

P
∐
Q1
∼= P

∐
Q2 if βp is not between these rays.

Proof: We need to exclude p = 1/4 and the main cardioid, because Kp would
have no pinching points, and p = −2, because rays landing together at the interval
K−2 are never homotopic with respect to the postcritical set. If P is postcritically
finite, Proposition ?? shows that the encaptures ϕθ1 ◦P and ϕθ2 ◦P are combinatori-
ally equivalent. So the canonical obstructions and the essential maps are equivalent
as well. According to the proof of Theorem 2.2, given in [18], the essential maps
are equivalent to the geometric matings. By continuity according to Section ??, the
result extends to geometrically finite P :
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• The example 11/24
∐

13/56 ∼= 11/24
∐

15/56 enjoys the following property:
the latter mating has an equator and a simple pseudo-equator, while the former
does not have either.

• As another example, consider p = γM(59/240) and q = γM(63/240). Applying
this construction to P and to Q gives P

∐
P ∼= P

∐
Q and Q

∐
P ∼= Q

∐
Q.

Here the first and second polynomials may be interchanged on both sides, so
we have four representations of the same rational map; in particular there are
shared self-matings P

∐
P ∼= Q

∐
Q, and the flipped matings P

∐
Q ∼= Q

∐
P .

• When P is the Basilica, all pinching points are preimages of αp . Since none of
these is iterated behind itself, shared matings are obtained from any pinching
point z1 , which is not αp or behind it. Dudko [10] has shown that these
are the only shared Basilica matings, since the parameter space is described
as a mating of M and Kp . The simplest example is given by P

∐
(z2 ± i):

the geometric matings are distinct and complex conjugate, and both linear
conjugate to z2+2

z2−1 . The example P
∐

5/24 ' P
∐

7/24 is illustrated with a
video of slow mating on www.mndynamics.com . Aspenberg [1] constructs
the semi-conjugation from the Basilica to the rational map, beginning with
the Boettcher map; in this alternative approach, shared matings are obtained
from a non-unique labeling of Fatou components by bubble rays.

• Shared matings in the family of Chebyshev maps are discussed in Section 4. In
certain cases, lower bounds on the multiplicity are obtained from homotopic
rays according to Proposition 3.1, or upper bounds are obtained directly.

• When z1 is a branch point of Kp , there may be more than two parameters
qi . In Theorem 5.1 of Section 5, unboundedly shared Airplane matings with
small preperiods and periods are constructed. Although the Airplane does
not contain any branch point, this is achieved by choosing qi with a common
branch point in Kq .

• If f is a critically preperiodic rational map of degree d ≥ 2 with three or
four postcritical points, a pseudo-equator may produce several unmatings by
choosing different pseudo-isotopies to its preimage [24]. A higher multiplicity
is obtained when there are degenerate critical points, or when a critical point
is mapped to another one. Probably the only quadratic example is the Lattès
map of type (2, 4, 4). See [13] for related results on NET maps.

Remark 3.2 (Finite multiplicity)
If f is a postcritically finite quadratic rational map, can there be infinitely many
representation as a mating f ' P

∐
Q?

• When f is hyperbolic, there are only finitely many candidates for P and Q, since
there are only finitely many quadratic polynomials with a given superattracting
period.
•When one critical point is periodic and one is preperiodic, finiteness is not obvious.
For a specific family, finiteness is shown in Theorem 4.2 of the following section, using
similar techniques as in the Lattès case.
• When both critical points are preperiodic, finiteness is shown for Lattès maps
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in [16]. Probably the techniques can be applied to a few other examples of small
preperiod and period, but a general proof shall be harder.

4 Shared matings in the Chebyshev family

Let us define a Chebyshev map as a quadratic rational map of the form f(z) =
fa(z) = −z2+a+2

z2+a
, a 6= −1, for which f(∞) is pre-fixed: ∞⇒ −1→ 1 ↑. This family

contains matings with the Chebyshev polynomial T (z) = z2 − 2 in particular:

Proposition 4.1 (Chebyshev maps as matings)
Suppose P (z) = z2+p and Q(z) = z2+q are geometrically finite and not in conjugate
limbs of the Mandelbrot set M. Then the geometric mating is linear conjugate to a
Chebyshev map, fa ' P

∐
Q, if and only if P and Q are one of the following forms:

a) Q is the Chebyshev polynomial T (z) = z2− 2 and p is not in the 1/2-limb of M.

b) p is in the k/r-limb of M, and q = γM(−θ), where θ is one of the r angles at
−αp ∈ Kp (which depend only on k/r).

c) For a rotation number k/r 6= 1/2, denote the angles of the k/r-wake by θ± and
let θ = (θ− + θ+)/2 be the unique angle of preperiod 1 and period r in that limb. If
q = γM(θ), then P must be in the closed wake of the primitive hyperbolic component
Ω with the root γM(−2θ).

The Petersen transformation [25] maps symmetric rational maps to Chebyshev
maps, such that self-matings are mapped to Chebyshev matings; see also Remark X in
[20]. In the previous section the example of shared self-matings 59/240

∐
59/240 ∼=

63/240
∐

63/240 was obtained from Proposition 3.1; now the Petersen transforma-
tion gives the shared Chebyshev mating 59/240

∐
1/2 ∼= 63/240

∐
1/2.

Proof of Proposition 4.1: As explained in Figure 1, instead of saying that
angles of z ∈ Kp and w ∈ Kq are complex conjugate, we may say that z ∈ Kp shares
an angle with w ∈ Kq , or we may connect Kp to Kq as well. In the formal mating

g = P t Q, the ray-equivalence class of g2(∞), corresponding to Q
2
(0) = Q(q), is

fixed. By Proposition ??, it must contain a fixed point of P or Q. If this is βp or
βq , the fixed class is the 0-ray and Q(q) = βq , which is case a).

b) Now suppose that Q(q) is in the same ray-equivalence class as αp and p ∈
Mk/r . Then the critical value q is connected to −αp . This connection must be
direct, since Kp does not contain another pinching cycle of ray period r. So q shares
an external angle with −αp and all of these angles may occur, since none is in the
same sector at αp as the critical value p, and q is not in the conjugate limb. The
r angles belong to different Misiurewicz points in fact, since otherwise some P tQ
would have a closed ray connection.

c) Consider q ∈Mk/r and P such that Q(q) is in the same ray-equivalence class
as αq . The points are not equal, because the preperiod would have to be ≥ r > 1.
So the ray connection must have length 2, since length ≥ 4 would require additional
pinching cycles of ray period r in Mk/r . Thus q has the external angle θ defined
above, and Kp must contain a pinching cycle of period and ray period r, which
connects the cycle of 2θ = θ− + θ+ to that of θ± . This cycle of Kp persists from a
primitive hyperbolic component Ω before p.
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It remains to show that Ω exists and is unique. In the dynamic plane of Q, the
r rays landing at αq define r sectors W1 , . . . , Wr with 0 ∈ Wr and q ∈ W1 , such
that Q is a conformal map W1 → W2 → . . . → Wr−1 → Wr and the sectors are
permuted with rotation number k/r. The external rays with angles 2i−1θ± bound
Wi for 1 ≤ i ≤ r. Now Wi contains 2i−1θ as well for 2 ≤ i ≤ r − 1 and Wr has
both 2r−1θ and 2rθ = −θ. For r ≥ 3 it follows that 2θ has exact period r. We are
looking for a primitive orbit portrait [27] connecting each angle in {2iθ | 1 ≤ i ≤ r}
to a unique angle in {2iθ− | 1 ≤ i ≤ r} = {2iθ+ | 1 ≤ i ≤ r}.

Starting in Wr , connect 2r−1θ to either 2r−1θ− or to 2r−1θ+ , such that 2rθ is not
separated from the other angles. Pull the connection back until 2θ is connected to
2θ− or 2θ+ . The complement of the r − 1 disjoint small sectors is connected, so we
can connect the remaining angles 2rθ and θ+ or θ− as well. This construction gives
a valid orbit portrait and defines Ω, which has the external angles 2θ and 2θ− or
2θ+ . Note that it is a narrow component, i.e., its angular width is 1/(2r − 1) and
there is no component of period ≤ r behind Ω. To show that Ω is unique, suppose
we had started by connecting 2r−1θ with an angle not bounding Wr and pulled it
back. This pullback would follow the rotation number k/r as well and the small
sectors would overlap, the leaves would be linked.

Case b) provides maps from limbs of M to the Chebyshev family, which are
partially shared according to Proposition 3.1: e.g., for P geometrically finite in
the 1/2-limb, consider the geometric matings corresponding to P

∐±1/6, i.e. p 7→
fa ' P

∐±1/6. These two maps agree on the small Mandelbrot set of period 2,
but in general do not agree on its decorations. Likewise, for p in the 1/3-limb,
we have three maps corresponding to P

∐
3/14, P

∐
5/14, and P

∐
13/14, which

agree on the small Mandelbrot set of period 3. In the decorations, two of the
maps may agree on certain veins, but in general the third one will be different: the
relevant rays are no longer homotopic. Note that according to case c), some of these
Chebyshev maps are represented by P̃

∐
3/14 as well, with p̃ in the Airplane wake.

In particular, we have 1/7
∐

3/14 ∼= 1/7
∐

5/14 ' 1/7
∐

13/14 ' 3/7
∐

3/14. Under
the Petersen transformation mentioned above, this Chebyshev map is the image of
1/7

∐
3/7 ' 3/7

∐
1/7, which is a symmetric map but not a self-mating.

Theorem 4.2 (Chebyshev maps as shared matings)
Matings P

∐
Q in the Chebyshev family with hyperbolic P have non-uniformly

bounded multiplicity:

1. Suppose f = fa is a Chebyshev map, such that z = 0 is n-periodic. Then there
are at most a finite number of representations fa ' P

∐
Q.

2. For each rotation number k/r, there is a unique Chebyshev map f = fa , such
that z = 0 is r-periodic and the fixed point 1 = f 2(∞) is a common boundary point
of the r immediate basins, which are permuted with rotation number k/r. This map
has precisely r + 1 realizations as a geometric mating, f ' P

∐
Q, when r ≥ 3; for

r = 2 there are only 2 representations.

Proof: 1. P will be n-periodic, so there are only finitely many possibilities for
P . We must see that r is bounded in cases b) and c). But in both cases we have
r ≤ n, since the wakes of period r are narrow: in case b) this is a basic property of
limbs, and in case c) it was noted in the proof of Proposition 4.1.

2. In case a) of Proposition 4.1, z = 1 corresponds to the ray-equivalence class
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of angle 0, which does not touch a hyperbolic component of P . In cases b) and c),
the rotation number at −1 is precisely k/r, so the value of k/r from the proposition
must be the same as in the hypothesis of the theorem; case c) is excluded for
k/r = 1/2. In both cases, there is only one hyperbolic component of period r in
the limb or wake. It remains to show that fa is unique, so that the r + 1 (or two)
matings actually give the same map. Intuitively, this follows from the fact that the
hyperbolic component of fa bifurcates from the hyperbolic component where −1 is
attracting; the multiplier map with ρ = −4

a+1
is injective for |a + 1| ≥ 4. It can

be proved by Thurston rigidity, since there is a forward-invariant graph connecting
the postcritical points, which depends only on k/r up to isomorphy. So all possible
maps fa are combinatorially equivalent, linear conjugate, and equal. Note that the
case of k/r = 2/5 was discussed in the Introduction and illustrated in Figure 1.

5 Unboundedly shared Airplane matings

Denoting the Rabbit by R and the Airplane by A, we have seen in the previous Sec-
tion 4 that R

∐
3/14 ∼= R

∐
5/14 ' R

∐
13/14 ' A

∐
3/14. This example belongs

both to the Chebyshev family and to the family V3 with a 3-periodic critical point.
Unboundedly shared matings were obtained in Theorem 4.2.2 by increasing both the
period of the hyperbolic polynomial P and the ray period of the Misiurewicz poly-
nomial Q. Another example is obtained below, where Q is always the Airplane, and
the preperiod of P is unbounded. The proof will be a simple application of Propo-
sition 3.1 again. Airplane matings with unbounded multiplicity are due to Rees [32]
with hyperbolic polynomials P , such that the period of P grows exponentially with
the multiplicity.

Theorem 5.1 (Unboundedly shared Airplane matings)
For the Airplane q and n = 3, 5, 7, . . ., there are n Misiurewicz parameters
p∗ , p2 , . . . , pn such that the geometric matings agree, f ∼= Pi

∐
Q for all i =

∗, 2, . . . , n. Here all pi have preperiod n + 1, p∗ has period 1 and p2 , . . . , pn have
period n; so f(∞) has preperiod n + 1 and period 1. The statement remains true
for large n, when q is any geometrically finite parameter behind γM(5/12) and before
the Airplane. E.g., q may be the Misiurewicz point γM(41/96) as well.

Proof: Denote the Airplane parameter by q and fix n ∈ {3, 5, 7, . . .}; let c be
the first center of period n behind the Misiurewicz point γM(5/12). The orbit of the
characteristic point z1 is ordered as

z1 < γc(5/12) < zn−1 < zn−3 < . . . < z6 < z4 < αc <

< z3 < z5 < . . . < zn−2 < zn < 0 < −αc < z2 ; (1)

the critical orbit (z∗i ) is similar with z∗n = 0. This ordering is well-known from
discussions of Šharkovskĭı combinatorics. It can be checked with dynamic angles
as follows: first, note that the order of the critical orbit is compatible with the
assumption that fc : [z∗1 , 0] → [z∗1 , z

∗
2 ] is strictly decreasing and fc : [0, z∗2 ] →

[z∗1 , z
∗
3 ] is strictly increasing, so this defines a unique real polynomial. Let Θ1 be

the larger angle at z1 and denote its iterates under doubling by Θi . Then

0 < Θ2 < 1/6 < Θn < Θn−2 < . . . < Θ5 < Θ3 < 1/3 < (2)
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Figure 2: Consider the formal mating g = P tQ, with the Airplane Kq shown rotated

on the left, and Kp on the right for some p in the 2/5-limb. According to the proof of

Theorem 5.1, there are eight angles θ2 , . . . , θ5 , θ
′
2 , . . . , θ

′
5 , such that −θi and −θ′i land

together at the Airplane ∂Kq , while θi land together at ∂Kp . So the eight rays belong

to a preperiodic ray-equivalence class of diameter four; actually there are two more rays

crossing the Airplane on the real axis. Now there are five parameters p = p∗ , p2 , . . . , p5 ,

such that this ray-equivalence class contains the critical value p, and it is shown that the

corresponding matings define the same rational map f .

< 1/2 < Θ1 < 7/12 < Θn−1 < Θn−3 < . . . < Θ6 < Θ4 < 2/3 < 1 ,

since the derivative of the real polynomial fc(z) = z2 + c is negative for z < 0
and then fc swaps the lower and upper half-planes. Reading off binary digits gives
Θ1 = .10 01 01 . . . 01 0, which is the largest n-periodic angle less than 7/12 = .10 01.
Reversing these arguments, it follows that the center defined by γM(Θ1) is real and
the orbit is as given by (1). Each zi has two external angles, Θi and 1 − Θi . Note
that fc : [0, βc] → [c, βc] is increasing; taking preimages of zi with respect to this
branch gives strictly preperiodic points except for z3 , which has a periodic preimage
z2 on the positive half-axis.

Now consider any parameter p in the limb with rotation number k/n, k = (n−
1)/2. The wake is bounded by 0 < θ− < θ+ < 1/3. We have θ+ = .01 01 . . . 01 0,
since this is the largest n-periodic angle less than 1/3 = .01, or by sketching an
n-Rabbit. So θ+ = Θ3 and θ− = Θ5 ; note that Θ1 = 1/2 + θ+/4 is an instance
of the Douady Magic Formula from Proposition 2.1. — The critical value p of
fp(z) = z2 + p is in the sector at αp bounded by the dynamic rays with the angles
θ± . This sector is mapped injectively for n− 1 iterations; the image sector contains
0, −αp , and a unique point in f−1p (−αp) . Thus the original sector contains unique
preimages of αp with preperiods n and n+ 1, respectively. Denote the angles of the
latter by θ1 < . . . < θn . Under n iterations, these are mapped to angles at −αp ,
such that θ1 gives the smallest angle in [1/2, 1] and θn gives the largest angle in
[0, 1/2]. So under n + 1 iterations, θ1 is mapped to θ+ = Θ3 and θn is mapped to
θ− = Θ5 .

Next, let us look at the Airplane Julia set Kq with Q(z) = fq(z) = z2 + q. As
the parameter was shifted from c to q, the n-periodic points with angles Θi moved
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holomorphically; in particular the pre-characteristic points corresponding to ±zn
bound an interval containing the real slice of the Airplane Fatou component around
0. Consider the Fatou component of fc at z3 ; it defines an interval in Kq , which
contains a unique preperiodic component Ω of preperiod n− 3. Its largest antenna
in the upper halfplane has angles in a subset of [Θ5 , Θ3] = [θ− , θ+]. Since fn−3q

maps it to the largest antenna on the upper side of the Fatou component around
0, fn−2q maps it behind the component around q. Then it is behind the component
around fq(q), then to the right of the component at 0, and finally we see that fn+1

q

maps the antenna of Ω to the interval (γq(4/7), βq]. Denote by xi the preimage of
the n-periodic point with angle Θi , then x3 has preperiod n and the others have
preperiod n + 1. On the other hand, the angles θi are the only angles of preperiod
n + 1 in (θ− , θ+) that are iterated to some Θj . Recalling that θ1 is iterated to
θ+ = Θ3 , we see that each θi with i 6= 1 lands at some xj with j 6= 3. Denote the
other angle by θ′2 , . . . , θ

′
n ;̇ it is in (θ− , θ+) as well, since the antenna is contained

in an open half-strip bounded by these rays and a real interval.
Finally, define the Misiurewicz parameters p∗ = γM(θ1) = . . . = γM(θn) and pi =

γM(θ′i), i = 2, . . . , n. Now p∗ is of α-type by construction, so it has preperiod n+ 1
and period 1. The pi are endpoints, since there is no other hyperbolic component
of period n in the k/n-limb; they are pairwise different in particular. Note that for
i = 2, . . . , n, the rays Rq(−θ′i) and Rq(−θi) land together as well and the landing
point never returns to this wake, so the two rays are homotopic with respect to its
orbit and to the real orbit of q, and the encaptures are equivalent: by Proposition 3.1,
the matings Q

∐
Pi ∼= Q

∐
P∗ agree, as do Pi

∐
Q ∼= P∗

∐
Q. — For the example

of k/n = 2/5, Figure 2 shows the rays with angles −θi , −θ′i landing pairwise at
∂Kq, and the rays with angles θi , θ

′
i landing at ∂Kp∗ , at a preimage of αp∗ and at

endpoints, respectively.
The landing pattern at ∂Kq is stable for parameters q between c of period n as

above and the Airplane, but the relevant antenna will bifurcate when q is too far
behind the Airplane.

Note that we have constructed n different matings giving the same rational map,
but in contrast to Theorem 4.2, no upper bound on the multiplicity is known in this
case. — Assuming that the map Mk/n → V3 , P 7→ f ∼= P

∐
Q is continuous, there

will be self-intersections of the image corresponding to these shared matings.

6 Examples of mating discontinuity

Geometric mating is not jointly continuous on the subset of M×M where it can
be defined. The first three examples below are due to Epstein [11, 5]. Note that
all of these techniques involve neutral parameters, and that they do not exclude
separate continuity. For specific one-dimensional slices with Q fixed, partial results
on continuity have been obtained by Dudko [10] and by Ma Liangang [22].
Rewrite with three subsections: first, DMF and bitransitive, shared old and new.—
Special thanks to Adam Epstein for explaining unpublished results.

• Let fλ be a quadratic polynomial with a fixed point of attracting multiplier
λ. For |λ| < 1, |µ| < 1 there are explicit rational maps Fλ, µ ' fλ

∐
fµ .

Suppose λ, µ → 1 tangentially, such that the third multiplier ν is constant.
Then if Fλ, µ converges to a quadratic rational map, it will depend on ν, so
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there are oscillating sequences as well. Note that convergence may depend
on a normalization allowing the collision of the respective fixed points; in a
different normalization, Fλ, µ might converge to a map of degree one or to a
constant as well.

• Results on shared matings with cluster cycles by Sharland [35, 36] are re-
ported in Section 3. For rotation number 1/n, we have fn ∼= Rn

∐
Qn '

Pn
∐
Rn , where the center parameters correspond to the following roots:

rn ∼ γM(1/(2n−1)) = γM(2/(2n−1)), qn ∼ γM(−3/(2n−1)) = γM(−4/(2n−1)),
and pn ∼ γM((2n−1−1)/(2n−1)) = γM(2n−1/(2n−1)). Then rn → r0 = 1/4 =
γM(0), qn → q0 = 1/4 = γM(0), and pn → p0 = −2 = γM(1/2). Now if mating
was continuous, we should have R0

∐
Q0 ' P0

∐
R0 ; both geometric matings

exist, the former has two parabolic basins and the latter has one.

• For a parabolic or bounded-type Siegel parameter p on the boundary of the
main cardioid with angle θ and the real parameter q defined by the Douady
Magic Formula Θ = 1/2 + θ/4 according to Proposition 2.1, consider the
geometric mating fθ ∼= P

∐
Q, which exists according tp Blé-Valdez [2, 3].

When θ is irrational, then f 2
θ (∞) = 0, since the corresponding point in Kq

has the angles ±2Θ = ±θ/2 and the critical point of P has θ/2 as well. But
when θ is rational, then either 0 is in a parabolic basin and ∞ is preperiodic,
or there are disjoint cycles of parabolic basins; in both cases f 2

θ (∞) 6= 0. So
approximating a rational angle with irrational ones gives a contradiction to
continuity.

• Theorem 6.1 below uses similar ideas to show that the limit is different from
the expected one; since only rational angles are used, no special arguments are
needed to show matability. Here both pn and qn are Misiurewicz polynomials;
a concrete example is given below as well.

• Shared matings according to Theorem 4.2 can be used to produce several
counterexamples to continuity; here pn is hyperbolic and qn is Misiurewicz.
Again, the contradiction comes either from a different number of parabolic
Fatou cycles, or from an expected limit outside of the Chebyshev family.

• Different kinds of discontinuity may be expected in higher degrees. E.g., with
cubic polynomials fa(z) = z3 + az2, the mating fa

∐
f−a gives an antipode-

preserving rational map [4]. The former bifurcation locus shall be locally
connected at parabolic parameters, while the latter is not. So for suitable
sequences of postcritically finite polynomials, there will be an oscillatory be-
havior.

Theorem 6.1 (Discontinuity with bitransitive family)
Consider a sequence of rational angles θn → θ0 , such that θn and 2θn are preperiodic
for n ≥ 1, 2θ0 is periodic, and θ0 may be either unless θ0 and 2θ0 belong to the same
root. Set pn = γM(θn) and qn = γM(−2θn) for n ≥ 0. Then the sequence of geometric
matings fn ∼= Pn

∐
Qn does not converge to f0 ∼= P0

∐
Q0 .

Proof: First, note that θ and 2θ are never in the same limb, unless both are
angles of the root. Thus all geometric matings under consideration exist. Since
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the angle θn of pn ∈ Kpn is complex conjugate to an angle −θn of 0 ∈ Kqn , there
is a direct ray connection between these two points, and the rational map satisfies
fn(0) = ∞. We have fn 6→ f0 since f0(0) 6= ∞: while z = ∞ has an infinite orbit
converging to a parabolic cycle of f0 , z = 0 either has a finite orbit or it converges to
a different parabolic cycle. — This phenomenon seems to be analogous to parabolic
implosion, if we are looking at the polynomials Qn or at encaptures according to
Proposition ??: qn = γqn(−2θn) converges to the critical value q0 inside a parabolic
Fatou component of Q0 , but γq0(−2θ0) is a boundary point of this component. Of
course, parabolic implosion looks different for the rational maps here, since the Julia
set of fn is all of Ĉ.

A concrete example is given by θn = un/2
2n with un = (22n−1 + 1)/3. Then pn

and qn are β-type Misiurewicz points, converging to the Misiurewicz point p0 = i =
γM(1/6) and the root q0 = −3/4 = γM(1/3), respectively, and the matings do not
converge to the mating of the limits. Probably we have a parabolic 2-cycle in both
cases, and Fatou components corresponding to a fat Basilica, but the limit of the
matings has 0 and ∞ in different components of the Fatou set, while the mating of
the limits has 0 in the Julia set at a preimage of the parabolic fixed point.
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