
Lattès maps and quadratic matings

Wolf Jung
Gesamtschule Brand, 52078 Aachen, Germany.

E-mail: jung@mndynamics.com

Dedicated to Mitsuhiro Shishikura for his 2 · (25 − 1)nd birthday

Abstract

In complex dynamics the Thurston Theorem decides, whether a postcritically
finite branched cover g is equivalent to a rational map f . In the general
case this happens, if and only if there is no obstructing multicurve. In the
exceptional case of orbifold type (2, 2, 2, 2), however, the criterion is different.
A Thurston map of this kind is described by a real-affine map on a torus, and
there is an equivalent Lattès map, if and only if the 2 × 2 matrix has non-
real eigenvalues, or it is a multiple of the identity. Note that when g of type
(2, 2, 2, 2) is unobstructed, there need not be an equivalent rational map f .

A geometric mating of two postcritically finite quadratic polynomials
P (z) = z2+p and Q(z) = z2+q is a rational map f , which is conjugate to the
topological mating, where the filled Julia sets of P and Q are glued along their
boundaries. Moreover, f is combinatorially equivalent to the formal mating g
or to the essential mating g̃. When there are suitable identifications between
postcritical points, f may be a Lattès map. Using polynomial combinatorics,
it is shown here that there are precisely nine kinds of examples, such that g̃ is
of type (2, 2, 2, 2), and the parameters p and q are not in conjugate limbs of
the Mandelbrot set. It turns out that a rational map f exists in every case.
In the general situation of a hyperbolic orbifold, the corresponding result was
obtained by Rees–Shishikura–Tan [TL], who showed that g̃ is unobstructed.
In the exceptional case of type (2, 2, 2, 2), we need to check the eigenval-
ues of the matrix associated to g̃, which is done by applying the Shishikura
Algorithm to each example individually.

The direct or indirect identifications between postcritical points are un-
derstood by collapsing ray-equivalence classes of the formal mating g, which
defines the essential mating g̃.

1 Introduction

A Lattès map of type (2, 2, 2, 2) is a postcritically finite rational map f : Ĉ →
Ĉ with four postcritical points, whose critical points are non-degenerate and not
postcritical. It is projected from an unbranched cover of a torus, or from an affine
map C→ C modulo w 7→ −w. Thurston maps of type (2, 2, 2, 2) are described by
affine maps of R2, and many properties are obtained explicitly from integer matrices.
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iteration, pcf, Thurston
remainder in paragraphs corresponding to sections
dfns mating, question of convergence for (2, 2, 2, 2) orbifold
refs Milnor 1/4 v 1/4 several aspects, including gamma and tilings and measure,

here answering question on uniqueness of a semi-conjugation
For the Lattès map of type (2, 4, 4), there are precisely three kinds of matings,

and the slow mating algorithm converges in each case.

Figure 1: The formal self-mating 1/6 t 1/6 is shown in the left cartoon by drawing the

Hubbard trees in blue and red, the equator in green, and two postcritical ray connections

in black. These are simple rays with the angles 1/3 and 2/3, respectively. The middle

sketch illustrates the essential mating, where these ray connections are collapsed. The

preimage on the right shows that these structures are not invariant under pullback, but

there are more branches and more identifications.
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2 A worked out example of mating

3 Lattès maps and Thurston maps

3.1 Lattès maps

Consider a lattice Λ = Z · 1 + Z · ξ ⊂ C with Im(ξ) > 0, and an affine map
L(w) = η · w + κ with η · Λ ⊂ Λ, which covers a self-map of the torus C/Λ. If
Λ and L have additional symmetries, we obtain a postcritically finite rational map
f : Ĉ → Ĉ of degree d = |η|2, a Lattès map. Under the symmetry w 7→ −w
in particular, with κ ∈ Λ/2, f has four postcritical points and all critical points
are non-degenerate and not postcritical, which is symbolized by the orbifold type
(2, 2, 2, 2). There is an even Weierstraß function ℘ : C → Ĉ with f ◦ ℘ = ℘ ◦ L.
Probably the best known examples are flexible or integral Lattès maps, which exist
when d is a square: for η =

√
d the generator ξ is arbitrary, giving a one-parameter
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family of quasi-conformally conjugate rational maps, having invariant line fields. We
shall see that already in degree d = 2, Lattès maps have many interesting properties,
e.g., related to the Thurston theory and to matings. See [pasteMilnor, lattesMilnor,
BM] for other properties and alternative characterizations.

Figure like [SY] or [pasteMilnor]. explain geometry Λ, Λ/2, torus, pillowcase, sphere.
cover is branched on Λ/2, maps to postcritical set P of f . f−1(P ) = Ω ∪ P

From now on, we assume the degree is |η|2 = 2. Since η · Λ ⊂ Λ, there are
integers a, b, c, d such that

η · 1 = a+ c ξ η · ξ = b+ d ξ . (1)

Due to the symmetry w 7→ −w, f is covered by another map as well, where η is
replaced with −η, but η2 characterizes f . Different choices of κ may give equivalent
maps, cf. Proposition 3.1.2. A change of ξ means choosing a different fundamental
cell in the same lattice Λ, and the matrix A with components a, b, c, d will be
conjugated with a matrix S ∈ SL2(Z). In the quadratic rational case, we always
have bc 6= 0, and Im(η) = Im(c ξ) 6= 0. Now (1) gives the following relations,

η2 − (a+ d)η + 2 = 0 c ξ2 + (a− d) ξ − b = 0 , (2)

and the determinant is ad− bc = 2. In particular, we have |a+ d| ≤ 2 and there are
only finitely many values possible for η2. Moreover, there are only three branch por-
traits of type (2, 2, 2, 2) in degree two. Grouping complex conjugate maps together,
it turns out there are four cases of quadratic rational maps of type (2, 2, 2, 2); an
overview is given in Table 1.

3.2 The Thurston characterization

define Thurston map g, postcritical set P , marked set Z, Thurston’s combinatorial
equivalence ∼

question of rational map, reference to obstructions
application to constructing rational maps, and matings in particular.
A quadratic Thurston map of type (2, 2, 2, 2) can be constructed as follows:

take the lattice Λ = Z2 ⊂ R2, fix an even cover R2/Z2 → Ĉ, choose an affine map
L(~x) = A~x+~κ with A ∈ Z2×2 of determinant 2 and ~κ ∈ Z2/2, and define g : Ĉ→ Ĉ
such that it is covered by L. The notation

A =

(
a b
c d

)
:

(
d
−c

)
7→
(

2
0

)
,

(
−b
a

)
7→
(

0
2

)
(3)

is compatible with (1) and (2); so η is an eigenvalue of A and ξ corresponds to the
second base vector, if it is not real. Conversely, every quadratic Thurston map g of
type (2, 2, 2, 2) is equivalent to a map covered by an affine map in this way. See
[DH, book2, BM, SY] for the proof, which is based on the intermediate lift to a
torus and on the identification of a homology group with Z2, or on the notion of a
universal orbifold cover.

Proposition 3.1 ()
1. A quadratic Thurston map g : Ĉ → Ĉ is of type (2, 2, 2, 2), if it has four
postcritical points and no critical point is postcritical. Assuming that there are no
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Quadratic rational Lattès maps f of type (2, 2, 2, 2)

Branch portrait a) and b)
⇒ • ↘

• → • ↑
⇒ • ↗

c) d)
⇒ • → • ↑

⇒ • → • ↑

⇒ • → •
l

⇒ • → •
a) u = 1±

√
2, η2 = −2, κ = 0

b) c = ±i, η2 = ∓2i, κ = 0
c) c = 1±

√
7i

4
, η2 = −3∓

√
7i

2
, κ = 0

d) c = 1±
√
7i

2
, η2 = −3±

√
7i

2
, κ = 1/2

a) is symmetric under complex conju-
gation,
b) under inversion.

Both c) and d) are symmetric under
inversion.

The Thurston pullback σf , the pull-
back of simple closed curves, and the
virtual endomorphism Φf : H → G of
the pure mapping class group are of fi-
nite order.

All of these relations have no peri-
odic orbits except for the obvious fixed
points.

In a symmetric cover, σf projects to
an isomorphism of moduli space, and
a moduli space map k exists there.

The correspondence on moduli space is
not reduced in a covering space.

Some iterate of f is a flexible Lattès
map.

No iterate of f is flexible.

Quadratic Thurston maps g of Lattès type (2, 2, 2, 2)

The trace of A is even.
All values of ~κ are equivalent.

The trace is odd.
Changing ~κ gives either c) or d).

g cannot have an obstruction. g may be obstructed.

Table 1: Up to conjugation with a Möbius transformation or complex conjugation, there

are four cases of quadratic rational maps of type (2, 2, 2, 2); see Sections 3.4 and 3.5 for

concrete formulas. Thurston maps of type (2, 2, 2, 2) are discussed in Sections 3.2 and 3.3.

additional marked points, it is combinatorially equivalent to a map covered by a real
affine map L(~x) = A~x+ ~κ on the torus R2/Z2 modulo ~x 7→ −~x.

2. The possible branch portraits according to Table 1 are related to the parity of the
trace t = a+ d:

• When t is even, the branch portrait is a)b), and all values of the translation
~κ ∈ Z2/2 give conjugate affine maps L.

• When t is odd, changing ~κ gives two different affine conjugacy classes, which
correspond to the branch portraits of case c) and d), respectively.

3. Suppose the Thurston maps g and g̃ are covered by the affine maps L(~x) = A~x+~κ
and L̃(~x) = Ã~x + ~̃κ, respectively. Then g̃ is combinatorially equivalent to g, if and
only if Ã is conjugate to ±A with a conjugator S ∈ SL2(Z), and the translations
are conjugate as well.

Proof: 1. See the references given above, and [SY] for the case of additional
marked points; then a lift is possible unless there are removable Lévy cycles.

2. The branch portrait is obtained by checking all combinations of parity; a
priori there are sixteen combinations, but a few are ruled out by determinant 2. An
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explicit calculation checks whether two translations in Z2/2 are equivalent in Z2 by
conjugating with a translation in Z2/2.

3. Combinatorial equivalences ψ0 , ψ1 are covered by maps isotopic to the same
affine map; this map sends Z2/2 to itself, so S ∈ SL2(Z). We cannot distinguish
between A and −A, since the cover identifies ~x and −~x.

Theorem 3.2 (Thurston characterization)
Consider a quadratic Thurston map g : Ĉ→ Ĉ of type (2, 2, 2, 2), which is covered
by the real affine map L(~x) = A~x + ~κ up to isotopy. Then g is combinatorially
equivalent to a rational map f , if and only if the eigenvalues of A are not real, or
equivalently, if the trace is |t| ≤ 2.

Proof: If the eigenvalues are not real, determine ξ and η from (1) and (2) with
Im(ξ) > 0. Conjugate L with an affine map R2 → C, which is sending the base
vectors to 1 and ξ. The new map will be of the form η ·w+κ, so it covers a rational
Lattès map f . Conversely, any rational f is described by an affine map with non-
real eigenvalues according to the previous Section 3.1, and the matrices must be
conjugate by Proposition 3.1.3.

Remark 3.3 (Lifting curves)
In practice, the affine lift of a Thurston map g can be obtained as follows: choose a

simple closed curve γ through the four postcritical points, and cover Ĉ by R2/Z2 such
that the interior of γ is covered by [0, 1/2]2. Lift γ′ = g−1(γ) to R2. The curves
will be Z2-periodic and isotopic to straight lines through lattice points. Choose
a fundamental cell and determine the affine map L sending this parallelogram to
[0, 1]2. The coefficients of A are read off from (3). Of four adjacent cells, two will
give an orientation-preserving map, and these two give ±A.

3.3 The Thurston pullback

dfn Teichmüller space, moduli space, and pullback map σg; fixed point gives equivalence
to rational map [DH, book2, teich]

In the previous Section 3.2, we have characterized Thurston maps of type
(2, 2, 2, 2) in terms of the trace t = a+ d of an associated matrix A, and it was not
necessary to consider the pullback map. Now σg shall be discussed as well for two
reasons: to compare the pullback behavior to maps of type not (2, 2, 2, 2), see also
Remark ??. And because the convergence properties of the Thurston Algorithm for
certain matings will be investigated in Section 5; it turns out that locally in the
higher-dimensional space, there is an invariant center manifold, where the pullback
behaves as in the case of type (2, 2, 2, 2).

Theorem 3.4 (Thurston pullback)
Suppose g : Ĉ → Ĉ is a quadratic Thurston map of type (2, 2, 2, 2), without addi-
tional marked points. Then Teichmüller space T is identified with the upper half-
plane, and the Thurston pullback is given by a Möbius transformation

σg(τ) =
d τ + b

c τ + a
(4)

with integer coefficients and determinant 2. There are two possible cases:
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• σg has a unique fixed point in the upper halfplane T . Then g is combinatorially
equivalent to a rational Lattès map f , which is unique up to Möbius conjugation.
The fixed point is neutral with multiplier ρ = 2/η2.

• σg does not have a fixed point in T , there is no equivalent rational map, and the
Thurston pullback τn = σn

g (τ0) diverges to the boundary of T .

Proof: explain pullback of constant Beltrami coefficient This gives (4), where
a, b, c, d are the coefficients of the matrix A. Now σg(τ) = τ yields the same
equation as (2) for ξ, so a fixed point τ in the upper halfplane exists, if and only if
there is a ξ with Im(ξ) > 0. A short computation gives σ′g(ξ) = 2/η2.

Remark 3.5 (Thurston obstructions)
When g is not of type (2, 2, 2, 2), the Thurston pullback is weakly contracting,
so a fixed point is unique and globally attracting. An obstructing multicurve Γ
for a Thurston map g has certain properties under pullback, which imply that in
the Riemann surfaces defined by τn , corresponding hyperbolic geodesics get shorter
and annuli get thicker, which may prevent convergence. When g is not of type
(2, 2, 2, 2), the Thurston Theorem says that g is equivalent to a rational map, if
and only if it is unobstructed. This is not true if g is of Lattès type (2, 2, 2, 2):

• When g is quadratic and the matrix A from the affine lift of g has trace |t| ≥ 4,
there will be no obstruction, but g is not equivalent to a rational map either. The
pullback is bounded in moduli space, but diverges to the boundary in Teichmüller
space.

• Only for |t| = 3, there is an obstruction, and the iteration diverges to the boundary
in moduli space as well, since the obstruction is pinching. According to Selinger
[char], invariant essential curves are related to integer eigenvectors of A, and so
determinant 2 requires trace ±3. Note that an obstructed map will be of case c)
or d) according to Proposition 3.1.2. Alternatively, the core arc argument shows
that maps of case a)b) are unobstructed, since an invariant essential curve would
contradict the branch portrait.

• Quadratic rational maps are always unobstructed, but when the degree is a square,
there exists a family of flexible Lattès maps, which have a non-pinching obstruction
in fact.

3.4 The rational maps of cases a) and b)

Now we shall determine the quadratic rational Lattès maps f of type (2, 2, 2, 2) ex-
plicitly, by observing the branch portraits visualized in Table 1. See also [pasteMil-
nor, lattesMilnor]. The pullback correspondence on moduli space is discussed as
well. The affine maps from the previous Sections 3.2–3.3 will not be used to obtain
f ; but to see which rational map corresponds to which value of η, either the relation
ρ = 2/η2 can be employed, or the fact that a fixed point of f has multiplier ±η if it
is not postcritical, and multiplier η2 if it is.

The branch portrait of cases a) and b) is the same: both critical values are
mapped to the same prefixed point. Assume that the critical points are 0 and ∞,
so that f is even, and put the postcritical fixed point at 1, so f(±1) = 1. Denoting
the critical values by f(0) = u and f(∞) = −u, we have functions of the form Fu
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with

Fu(z) = −u
z2 + 1+u

1−u
z2 − 1+u

1−u
F−1u (z) =

√
1 + u

1− u
· z − u
z + u

. (5)

These functions will be used both for the Thurston pullback, where the parameter
u varies, and to determine specific values of u representing Lattès maps. Now the
condition Fu(±u) = −1 gives (u2 + 1)(u2 − 2u− 1) = 0.

Case a) is given by u = 1 ±
√

2, so F1±
√
2(z) = −(1 ±

√
2) z

2−(1±
√
2)

z2+(1±
√
2)

. The two

maps are real in this normalization, not symmetric under inversion, but they are
transformed into each other by the inversion in fact; so they belong to the same
combinatorial equivalence class. We have η2 = F ′

1±
√
2
(1) = −2 and κ = 0.

Case b) shall denote the maps with u = ±i, F±i(z) = ∓i z2±i
z2∓i . The two maps

are complex conjugate to each other, and each is invariant under conjugation with
the inversion z 7→ 1/z, so it can be written in the form f±i(z) = z2±i

1±iz2 according to
(7) as well. Computing F ′u(1) = (1 − u2)/u gives η2 = −2i for fi and η2 = 2i for
f−i , and we may assume κ = 0.

In this normalization at 0 and∞, moduli space is given by u ∈ Ĉ\{0, ∞, −1, 1}.
In case a) or b), the Thurston pullback σf of f defines a correspondence on moduli
space, such that u is pulled back to u′. Now u determines Fu by its critical values,
and u′ satisfies Fu(±u′) = −1 since Fu(−1) = 1. This example has the special
property, that the correspondence is reducible: (5) gives

u′ = ±1 + u

1− u
, a) u′ = −1 + u

1− u
b) u′ = +

1 + u

1− u
. (6)

Here the sign is determined from the known values of u at the fixed point of σf ; it
is the same sign globally by analytic continuation. The multiplier ρ of the Thurston
pullback is computed either from (6) or from the general relation ρ = 2/η2, which
gives ρ = −1 in case a), and ρ = ±i for F±i = f±i , η

2 = ∓2i of case b).

Remark 3.6 ()
1. The Thurston pullback map is of finite order, σ2

f or σ4
f is the identity. This

can be seen either from the fact that it is a Möbius transformation of the upper
halfplane with a rationally neutral fixed point, or by noting that at its fixed point,
σf is analytically conjugate to a branch of the correspondence (6) on moduli space,
and employing analytic continuation. Note that π : T → M is an infinite–to–one
cover semiconjugating the Möbius transformation σf to the Möbius transformation
(6). When g is a Thurston map of type (2, 2, 2, 2) with branch portrait a)b), the
correspondence on moduli space is given by (6) as well, but σf will not be of finite
order, if it does not have a fixed point.

2. In case a), f 2 is a flexible Lattès map of degree four. Since f is represented as
a geometric mating according to Theorem 4.3, the composition is represented by a
mating, whose combinatorial equivalence class does not determine a unique Möbius
conjugacy class; this observation is due to Pilgrim [pasteMilnor]. — Note that σf can
be used to obtain a parametrization for the flexible family: with u′ = −(1+u)/(1−u),
define Iu = Fu◦Fu′ . Analogously, case b) could be used to discuss the flexible Lattès
family of degree sixteen.

3. The correspondence on moduli space is reducible only in the “even” normaliza-
tion, which is a cover of ordinary moduli space in fact, see also Theorem ?? and
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Example ??.

4. Since the maps f±i are symmetric under inversion, we may look at the pullback
map restricted to symmetric maps. It turns out that this map is actually constant,
since fc(±i) = −1 for all parameters c. The multiplier ρ of σf should not depend on
the normalization, but this use of symmetric maps is not a normalization. Locally
there are two invariant manifolds, one with even maps and multiplier ∓i, one with
symmetric maps and multiplier 0; the first step of the pullback lands on the even
one, and symmetric maps land on the fixed point. We shall see in Section ?? that
slow mating converges for the self-mating of z2 + γM(1/4), which is related to the
eigenvalue of the invariant manifold being 0 instead of neutral.

3.5 The rational maps of cases c) and d)

Consider the following one-parameter families of quadratic rational maps, with c 6=
±1, u 6= 0, 1, or u 6= ±1. Again they are normalized with critical points 0 and ∞,
and fc is symmetric with respect to conjugation by the inversion z 7→ 1/z :

fc(z) =
z2 + c

1 + cz2
hu(z) =

z2 − 2u
u+1

z2 − 2
u+1

Hu(z) =
z2 − u+1

2

z2 − u+1
2u

(7)

Case c) is a Lattès map with disjoint critical orbits, such that both critical values
are mapped to fixed points. Now hu according to (7) satisfies ∞⇒ 1→ −1 ↑ , and
0 ⇒ u → −u ↑ requires hu(±u) = −u or u(u − 1)(u2 + 3u + 4) = 0; here u = 1 is
excluded and u = 0 has a different branch portrait. So u = (−3±

√
7i)/2 gives two

complex conjugate Lattès maps hu . It turns out tht these are rescaled to symmetric
maps fc with c = (1±

√
7i)/2. We have η2 = (−3±

√
7i)/2 and κ = 0.

The Thurston pullback induces a correspondence on moduli space; hu(±u′) = −u
gives

h−1u (z) =

√
2

u+ 1
· z − u
z − 1

, u′ = h−1u (−u) =
2
√
u

u+ 1
. (8)

The irrationally neutral fixed points at u = (−3 ±
√

7i)/2 have the multipliers
ρ = (−3 ∓

√
7i)/4. There is a superattracting fixed point at u = 1 indicating a

possible pinching obstruction; u = 0 is not attracting.
Case d) denotes a Lattès map with a postcritical 2-cycle. It shall have the

following branch portrait: 0 ⇒ u → −1 ↔ −u ← 1 ⇐ ∞. This is provided by Hu

if u satisfies Hu(±u) = −1, or (u− 1)(4u2 + 3u+ 1) = 0. So there are two complex
conjugate maps Hu with u = (−3±

√
7i)/8. Again, they are rescaled to symmetric

maps fc with c = (1 ±
√

7i)/4. Then ±η = f ′c(1) shows η2 = (−3 ∓
√

7i)/2 for the
affine lift, and κ = 1/2 gives the correct branch portrait.

Now consider the Thurston pullback with π(τ) = u and π(σf (τ)) = u′ in the
even normalization Hu . The correspondence on moduli space is determined from
Hu(±u′) = −1 as

H−1u (z) =

√
u+ 1

2u
· z − u
z − 1

, u′ = H−1u (−1) =
u+ 1

2
√
u
. (9)

At the parameters u = (−3 ±
√

7i)/8, a branch has a neutral fixed point with the
multiplier ρ = (−3 ±

√
7i)/4 = 2/η2. Note that ρ2 + 3

2
ρ + 1 = 0 shows that the

8



fixed point is irrationally neutral; I do not know whether it is Brjuno, but a local
branch of (9) will be linearizable anyway, because it is conjugate to the Möbius
transformation σf . The pullback relation has a superattracting fixed point u = 1 in
addition, which does not correspond to a rational map, but indicates that Thurston
maps with branch portrait d) may have a pinching obstruction.

In both cases c) and d) the Teichmüller space and moduli space contain another
invariant manifold corresponding to symmetric maps. The pullback relation reads

c) c′ =

√
− 2c

c2 + 1
, d) c′ =

√
− c

2 + 1

2c
. (10)

These pullback relations are locally conjugate to (8) and (9), respectively, via u = c2.
So they have the same neutral multiplier ρ at corresponding fixed points, in contrast
to case a) according to Remark 3.6.4. — Note that the affine lifts of cases c) and d)
have the same η2 but differ in the translation κ; the rational maps are related, e.g.,
as follows: if fc is of case c), then f1/c is of case d), and f 2

c = f 2
1/c .

4 Lattès maps as matings

. . .

4.1 Polynomial dynamics and combinatorics

P, K, rays, landing, persistence behind root
In Sections 4.3 and 6, we shall need special results on periodic cycles, to find or to

exclude certain types of ray connections, and to characterize essential matings with
specific ramification portraits. Item 1 is proved by counting endpoints of Hubbard
trees, and items 2 and 3 mean that a rotation number with high denominator is
rigid with respect to small changes. See also Proposition 3.6.c in [raysJung].

Lemma 4.1 (Combinatorics of quadratic polynomials)
Consider a Misiurewicz polynomial P (z) = z2 + p.

1. Suppose p has preperiod k, and the corresponding periodic cycle of P k(p) persists
from the root p′ ≺ p. Then k ≥ 2, and k = 2 occurs only when p is real.

2. Suppose p has preperiod k and it belongs to a limb of denominator r. The periodic
cycle of P k(p) shall have the same angles as the α-fixed point of another limb of the
same denominator r:
a) If k = 1, then r = 3.
b) If k = 2 and the two limbs are conjugate, then r = 3 or r = 4.

3. Suppose p, p̃ are Misiurewicz points of preperiod 1 and belong to limbs of denom-
inators r, r̃. Now P (p) shall have an angle of αp̃ and P̃ (p̃) shall have an angle of
αp . If r̃ < r, then r̃ = 2 and r = 3.

Recall that for each hyperbolic component with root p′ 6= 1/4, there is an associ-
ated cycle of primitive or satellite type, whose rays persist for all parameters p� p′.
Conversely, if a periodic cycle of P does not consist of endpoints, there will be a
corresponding root p′ � p. In particular, when p belongs to the limb of rotation
number s/r, the fixed point αp has an r-cycle of dynamic rays.
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Proof: 1. First, assume that p′ is the root of a limb with rotation number s/r.
Then P k(p) = αp requires k ≥ r, so k = 1 is excluded, and k = 2 only for r = 2 and
the real parameter p = γM(5/12) = γM(7/12). Second, assume the periodic cycle is
z1 , . . . , zm with m ≥ 3 and the characteristic point z1 separating p from the other
points in the cycle. T is the Hubbard tree of P and T ′ ⊂ T the connected hull of the
m-cycle. Then z1 and z2 are endpoints of T ′, and 0 is an inner point. p is behind
z1 and P (p) behind z2 , i.e., z2 is separating P (p) from 0. If k = 1, then P (p) is a
periodic point zj behind z2 , which contradicts z2 being an endpoint of T ′. If k = 2,
then z3 is not an endpoint of T ′, because P 2(p) would be a periodic point behind it,
noting that P is injective on [z1 , p] and on [z2 , P (p)], and an arc before z2 would
be mapped before z3 . So T ′ has only two endpoints, and P 2(p) ∈ T ′ implies that T
has two endpoints as well, so p is real.

2a) For r = 2, there is no other limb of the same denominator. For r = 3,
p = γM(±3/14) belongs to the limb with rotation number ±1/3, and it is mapped
to the angle ±3/7, which belongs to α of the conjugate limb. For r ≥ 4 we shall
obtain a contradiction: Denote the sectors at αp by W1 , . . . , Wr in the order of the
orbit of p, with p ∈ W1 and 0 ∈ Wr . The periodic r-cycle of P (p) shall be labeled
such that it has corresponding indices, so z2 = P (p) ∈ W2 , . . . , zr = P r−1(p) ∈ Wr ,
and z1 = P r(p). Now z1 is the periodic preimage of z2 , so z1 = −p is behind
−αp and belongs to Wr . The periodic points are endpoints by item 1, and we are
interested in the cyclic order of their angles θj . Since θr and θ1 are the only angles
in Wr , the rotation number must be ±1/r. Compare these angles to the original
sectors: we have removed position 1 and added a new position 1 next to position r.
If r ≥ 4, there are at least two neighboring positions left unchanged, so the rotation
number was ±1 in the limb of p already. This contradicts the hypothesis and item 1.

2b) For r = 3 or r = 4 we have p = γM(±5/28) and p = γM(±7/60), respectively.
For r = 5 and r = 6, no solution is found. It remains to obtain a contradiction for
r ≥ 7: We have p ∈ W1 , P (p) ∈ W2 , P 2(p) = z3 ∈ W3 , . . . , P r−1(p) = zr ∈ Wr ,
P r(p) = z1 , and P r+1(p) = z2 = −P (p) ∈ Wr . Now z1 is mapped into Wr , so
z1 ∈ Wr−1 or z1 ∈ Wr .
Case 1: z1 ∈ Wr−1 and in Wr we have, say, the cyclic order zr before z2. Then
the new rotation number is s′/r with s′ = (r + 1)/2, so the old one was s/r with
s = (r − 1)/2. It turns out that compared to the order of the original sectors,
two neighboring positions are swapped two times; position 1 is swapped with r− 1,
and position r swapped with 2. But there are other positions jumping over two
neighbors, so the rotation number could not have changed.
Case 2: z1 ∈ Wr and in Wr we have s′ steps from zr to z1 and from there to z2
as well. So without restriction assume s′ = 1. Then zr−1 comes directly before zr
regarding the cyclic order of angles. Since we have no periodic points in W1 and
W2 , only these could be between Wr−1 and Wr , so the old number of steps s was
1, 2, or 3. This contradicts s+ s′ = r.

3. For r = 3 and r̃ = 2, we have p = γM(±1/6) and p̃ = γM(∓5/14). So suppose
p has rotation number s/r with r ≥ 4. We may assume s/r < 1/2. Denoting the
sectors at αp by W1 , . . . , Wr again, the periodic points are in W2 , . . . , Wr : the
latter sector is the first one mapped back to W2 , so r̃ = r−1. There are 2s−1 steps
from zr to its image z2 and s steps from zr−1 to zr . So s = 1, αp has rotation number
1/r and αp̃ has 1/(r−1). The possible angles of the endpoint p̃ are determined from
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the inequality 1
2r−1−1 <

5
2(2r−1) <

7
2(2r−1) <

2
2r−1−1 . However, doubling the two angles

in the middle does not give an angle of αp , which is of the form 2j

2r−1 .

4.2 Definitions of mating

Theorem 4.2 ()
pcf non-conjugate limbs: RST, Th, RS

4.3 Lattès maps of type (2, 2, 2, 2) as matings

Up to inversion and complex conjugation, we have four rational maps f and nine
matings g to consider. Shishikura has found seven of these matings and determined,
which formal mating g corresponds to which rational function f . His algorithm
is described in [pasteMilnor] and in Section 5. The results are reported in the
following Table 2. Interchanging P and Q conjugates the mating with an inversion,
and reflection of both angles means complex conjugation of P and Q and of the
rational map. Altogether we have thirty matings for eight rational maps up to
linear conjugation, or seven rational maps up to Möbius conjugation.

L(w) = ηw + κ ρ = fc , Fu mating anti-mating

a) κ = 0, η2 = −2 −1 u = 1±
√
2 f ' ±1/12

∐
5/12 —

b) κ = 0, η2 = 2i −i c = −i f ∼= 3/4
∐

3/4 f ∼= 1/4
∏

1/4

f ' 5/28
∐

13/28

f ' 7/60
∐

29/60

c) κ = 0, −3−
√
7i

4
c = f ∼= 1/6

∐
5/14

η2 = −3+
√
7i

2
1+
√
7i

2
f ∼= 3/14

∐
3/14 f ∼= 5/6

∏
5/6

f ' 3/14
∐

1/2

f ' 5/6
∐

1/2

d) κ = 1/2, −3−
√
7i

4
c = f ∼= 5/6

∐
5/6 f ∼= 3/14

∏
3/14

η2 = −3+
√
7i

2
1−
√
7i

4
and more ??

Table 2: According to Definition 2.2 in [raysJung], ∼= means the rational map is topo-

logically conjugate to the topological mating in the usual normalization, angle 0 at z = 1,

and ' indicates that a rotation of the fixed points is applied in addition. The symmet-

ric anti-matings are obtained from the following result [antiJung]: if fc ∼= P
∐

P , then

f1/c ∼= P
∏

P . There may be further representations by non-symmetric anti-matings.

Theorem 4.3 (Lattès matings, following Shishikura)
1. There are precisely 30 formal matings g = P t Q of quadratic polynomials,
such that the essential mating g̃ has a parabolic orbifold of type (2, 2, 2, 2), and the
parameters p and q are not in conjugate limbs of the Mandelbrot set. Up to complex
conjugation and interchanging P and Q, these matings are represented by the nine
matings in Table 2.

2. In each case, the essential mating g̃ is combinatorially equivalent to a rational
map f ' P

∐
Q, which is given in the table as well. So f is a geometric mating in

fact, conjugate to the topological mating.
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The nine kinds of formal matings are obtained below, and the corresponding ra-
tional maps are identified as combinatorial matings in Section 5 from the Shishikura
Algorithm; this completes the proof of the Rees–Shishikura–Tan Theorem 4.2 for
orbifold type (2, 2, 2, 2). By the Rees–Shishikura Theorem [RS], the combinato-
rial mating is a geometric mating as well. To prove there are only nine cases up
to Möbius transformation and complex conjugation, we shall employ the following
ideas:

• If g̃ has a postcritical fixed point, a postcritical point of g must belong to a fixed
ray-equivalence class. By an observation of Sharland [. . . ], a ray-equivalence
class fixed by g must contain a fixed point of P or Q. See Proposition 2.6 in
[raysJung] for a more detailed description of rational ray-equivalence classes.

• The ray-equivalence class of β is a single ray, but the class of α provides more
possibilities. To build longer ray connections, rays from different cycles are
joined at periodic points, which persist from primitive hyperbolic components
before the current parameters. In principle these connections can be arbitrarily
long, but when a ray-equivalence class contains an α-fixed point, there will be
no primitive hyperbolic component of the same ray period in that limb.

• For a Misiurewicz point of low preperiod k in a limb of high ray period r,
the corresponding periodic cycle will follow the rotation for several steps; in
certain situations, this places a restriction on r. Specific results were obtained
in Lemma 4.1 from polynomial combinatorics.

We shall frequently speak of rays with angle θ connecting Kp and Kq ; this gives an
accurate description of the combinatorics without taking complex conjugate angles
all the time, but geometrically it means that the θ-ray of Kp is joined with the ray
of angle −θ at Kq .

Proof of uniqueness for the branch portrait of cases a)b): Since the
essential mating maps both critical values to the same prefixed point, P 2(p) and

Q
2
(q) must belong to the same ray-equivalence class, which is fixed by the formal

mating g. If this is the 0-ray, we have p = q = γM(±1/4) since p = q is excluded.
Otherwise this class contains an α-fixed point of P or Q; by Möbius conjugation we
may assume it to be αp , as the branch portrait is symmetric.

1. Suppose P 2(p) = αp , then p is real by Lemma 4.1.1 since the preperiod is
k = 2. So p = γM(5/12) = γM(7/12) and the only remaining angles of the same
denominator are 1/12 and 11/12. Taking one of these for q is seen to work, since q

is not in the same limb as p, and Q
2
(q) shares an angle with αp .

2. Now suppose that P 2(p) is connected to αp . This connection goes through
only one primitive cycle of Q and P 2(p) is an endpoint of the ray-equivalence class,
since there is only one hyperbolic component with the ray period of αp in the limb

of p. Thus Q
2
(q) must belong to the same primitive cycle of Q, and by Lemma 4.1.1

again, q is real. So the cycle is real and joins complex conjugate angles; the angle
of P 2(p) is complex conjugate to an angle of αp . Now Lemma 4.1.2b says that p
is in a limb of ray period 3 or 4. Each of these limbs has a unique angle with the
required denominator, which defines p, and a unique q is found to work: it is real

and the primitive cycle at Q
2
(q) shares angles with both P 2(p) and αp . This gives

±5/28
∐

13/28 and ±7/60
∐

29/60.
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Proof of uniqueness in case c): In the essential mating g̃, the critical values
are mapped to different fixed points; in the formal mating g, P (p) and Q(q) belong
to distinct fixed ray-equivalence classes. Up to Möbius conjugation, we have the
following possibilities:

1. If both classes contain β-fixed points, so p = q = −2, we are in conjugate
limbs. The classes are not actually distinct and the essential mating is undefined,
since the critical values would coincide. The topological mating would be defined
on a line segment instead of a sphere. In this case, the formal mating is of type
(2, 2, 2, 2) in fact, and it is obstructed with trace ±3.

2. Suppose Q(q) = βq and P (p) is in the ray-equivalence class of αp . Preperiod
k = 1 and Lemma 4.1.1 give P (p) 6= αp . The ray connection from P (p) to αp

passes through a single periodic point of Q, and the angle is complex conjugated
since q = −2 is real. So P (p) shares its angle with αp . By Lemma 4.1.2a, we have
p = γM(±3/14) ∈ M±1/3 . The angle ±3/7 of P (p) is reflected at the Airplane
characteristic point in Kq to become ±4/7, which is an external angle of αp .

3. Suppose Q(q) = βq and P (p) is in the ray-equivalence class of αq , which
consists of the rays with angles ±1/3. This gives p = γM(±1/6).

4. Suppose P (p) is connected to αp and Q(q) is connected to αq . Since k = 1,
Lemma 4.1.1 gives P (p) 6= αp and Q(q) 6= αq . So the former ray-equivalence class
contains a primitive cycle of Q, whose period is greater than the ray period of αq

and the same as the ray period of αp . But by the same arguments, the ray period
of αq is greater than that αp , which is a contradiction.

5. Suppose P (p) is connected to αq and Q(q) is connected to αp . These connec-
tions must be direct, since a longer connection would require a primitive hyperbolic
component before p but with period exceeding the ray period of that limb, or anal-
ogously for the limb of q. So P (p) shares its angle with αq and Q(q) shares its
angle with αp . The ray periods may be equal or different. In the former case,
Lemma 4.1.2a gives p = q = γM(±3/14); P (p) has the angle ±3/7, which is found
at αq as well. When the ray periods are different, Lemma 4.1.3 gives p ∈M±1/3 and
q ∈ M1/2 or vice versa. So P (p) has the angle 1/3 or 2/3, yielding p = γM(±1/6),
and Q(q) has ±1/7, ±2/7, or ±4/7. This gives q = γM(±9/14) and q = γM(±5/14).

Proof of uniqueness in case d): In the essential mating, both critical values
shall be mapped to the unique 2-cycle. For ±1/6

∐±1/6 this works, because the
2-cycles of P and Q have direct ray connections. See Figure 1. Suppose we had a
different formal mating with a 2-cycle of ray-equivalence classes, which contain P (p)
and Q(q), respectively. Without restriction, the 2-cycle of P is of satellite type and
forms the symmetry centers of these ray-equivalence classes, and p is in a sublimb
of the period-2 component of M. Since the preperiod is k = 1, Lemma 4.1.1 shows
that p is an endpoint ofM and P (p) is an endpoint of its ray-equivalence class. So
Q(q) is an interior point of the other ray-equivalence class; it is of primitive type in
contradiction to preperiod k = 1.

5 The Shishikura Algorithm

both proof of matability and identification.
note only one shared encapture, which gives that case a) is real.
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Figure 2: . . .

Remark 5.1 (Petersen transformation)
. . .

6 Lattès maps of type (2, 4, 4)

The notion of an orbifold, its type and its universal cover, is explained in [bookMil-
nor]. Most types of Thurston maps g or postcritically finite rational maps f have
hyperbolic orbifold, but there are a finite number of types with parabolic orbifold
[DH, book2H]. These maps are covered by affine maps on a cylinder or a torus;
the latter are Lattès maps [pasteM, lattesM, BM]. We have three examples of the
former in the quadratic case: z±2 is of type (∞, ∞) and z2 − 2 of type (2, 2, ∞).
The polynomials are trivial matings z2 ∼= z2

∐
z2 and (z2−2) ' (z2−2)

∐
z2. When

only postcritical points are marked, the Thurston pullback of the formal mating is
undefined for z2, constant for z2− 2. Normalizing the fixed point on the equator to
z = 1, the Thurston Algorithm for z2 is constant, while for z2 − 2 it is a rescaling.

Lattès maps of type (2, 2, 2, 2) have been discussed in the previous sections.
There is only one further type in the quadratic case: the branched cover C → Ĉ
or C/Λ → Ĉ and the map L are symmetric with respect to a quarter rotation,
and triangular domains correspond to half-spheres. The rational map f has three
postcritical points, including a critical point that is the image of the other critical
point, and the orbifold type is (2, 4, 4). Maps of this type are Möbius conjugate to
f(z) = −1 + 2/z2 with the ramification portrait 0 ⇒ ∞ ⇒ −1 → 1 ↑. As for type
(2, 2, 2, 2), this map does not occur as a formal mating, but as an essential and
geometric mating in cases where the formal mating has hyperbolic orbifold:

Theorem 6.1 (Matings and convergence for essential type (2, 4, 4))
1. The rational map f(z) = −1 + 2/z2 of type (2, 4, 4) is a geometric mating with
f ∼= 1/4

∐
1/2 ' 5/12

∐
1/6 ' 13/28

∐
3/14. These are the only representations up

to complex conjugation.

2. In each case, the rational maps from the Thurston Algorithm for the formal
mating, or the slow mating algorithm, do converge.
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Moreover, f is given by the geometric anti-mating z2
∏

(z2 + q) with q3 = −2,
and the formal anti-mating converges fn → f as well [antiJung]. Ray connections
of 5/12 t 1/6 are illustrated in Figure 3, and the canonical stratum of 1/4 t 1/2 is
shown in Figure 2 of [quadJung].

Figure 3: The formal mating 1/6 t 5/12 is shown in the left cartoon by drawing the

Hubbard trees in blue and red, the equator in green, and some critical and postcritical ray

connections in black, which are subsets of ray-equivalence classes. The right sketch illus-

trates the essential mating, where some ray connections are collapsed. These structures are

not invariant under pullback, but there would be more branches and more identifications.

The self-identification of the green curve suggests that there is no simple pseudo-equator

for this mating. (The sketch is inspired by Wilkerson [. . . ].)

Identification of the matings of type (2, 4, 4): We shall use similar argu-
ments as in Section 4.3 and the same notation, labeling critical values of the formal
mating g = P t Q as p and q. Once the essential mating g̃ is shown to have the
same ramification portrait as f , they will be combinatorially equivalent in fact, since
there are only three postcritical points and there is only one rational Möbius con-
jugacy class. Then the geometric and topological matings are obtained from the
Rees–Shishikura Theorem [RS]. — So we must determine all P and Q, such that
P 2(p) and Q(q) belong to the same fixed ray-equivalence class:

1. If this class consists of the 0-ray, we have q = γM(1/2) = −2 = q and thus
p = γM(±1/4) ∈M±1/3 .

2. Suppose this class contains αp . If P 2(p) = αp, p must be real according to
Lemma 4.1.1, since the preperiod is k = 2. So p = γM(5/12) = γM(7/12), and
q = γM(±1/6) has the property that Q(q) shares the angle ±1/3 with αp . Now
suppose that there was another example with a longer ray connection from P 2(p)
to αp . This connection must have length two, since there is no primitive hyperbolic
component of the same ray period in the limb of p. So there is a unique primitive
component before q, such that the cycle persisting behind it shares angles with both
P 2(p) and αp . Since there are no other points of Kq in the ray-equivalence class of
αp , this primitive cycle must contain Q(q) as well. But this contradicts Lemma 4.1.1
since the preperiod is k = 1.

3. Suppose the fixed postcritical class contains αq , then Q(q) is an endpoint
connected to αq with length two: the points cannot coincide because the preperiod
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is k = 1, and there can be no primitive component of the required period before q,
which would give a longer ray connection. So P 2(p) belongs to the primitive cycle
sharing angles with Q(q) and αq , and preperiod k = 2 implies that p is real according
to Lemma 4.1.1. Now the angle of Q(q) is complex conjugate to an angle of αq and
belongs to αq in the conjugate limb. By Lemma 4.1.2a, the ray period is 3. With
q = γM(±3/14) ∈M±1/3, the angle ±3/7 of Q(q) is connected to ±4/7 of αq at the
cycle persisting from the Airplane; the parameter p = γM(13/28) = γM(15/28) is
the only one of preperiod 2 and period 3 behind the Airplane.

Convergence of slow mating for type (2, 4, 4): ∞ is postcritical and we may
mark 0 as well without increasing the dimension. Convergence of the marked points
and maps for the Thurston Algorithm of the unmodified formal mating g is obtained
directly from Theorem ??, since the orbifold of the essential mating g̃ is not of type
(2, 2, 2, 2). But let us look at possible more direct arguments. Three postcritical
ray-equivalence classes will be pinched: the critical class of p ∼ 0, the pre-fixed
class of P (p) ∼ q, and the fixed class containing the full cycles of P 2(p) and Q(q).
Loops around these three trees form a simple obstruction for g. This obstruction is
canonical by the Selinger characterization; see [char] or Theorem 2.12 in [quadJung].
So it is pinched according to the Canonical obstruction Theorem [Pilgrim, ext,
quadJung], and marked points in the same ray-equivalence class will collide under
the Thurston pullback σg of the formal mating. The issue of Theorem ??, and the
underlying Theorem 3.11 in [quadJung], is that the colliding points do not wander.

When the marked points are normalized such that the critical point of Q is
at ∞, the polynomial fixed point within the fixed class is at 1, and its preimage
at −1, then convergence is obvious: all marked points collide with ∞, 1, or −1
as required. There is a subtle point, however, because this normalization may be
different from the usual normalization, where the fixed point on the equator of g is at
1. Comparing the pullback for 5/12

∐
1/6 or 3/28

∐
3/14 in the two normalization

means a variable rotation. So either we use the former normalization and get an
additional marked point on the equator; then we must show it to converge to 1± i
and conclude that the limit map is linear conjugate to the geometric mating in the
usual normalization. Or take the usual normalization during the pullback and have
three postcritical classes besides 1. So to show that convergence is independent of
the normalization, the Canonical obstruction Theorem alone may be not sufficient.

7 Related questions and results
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