Lattès maps and quadratic matings

Wolf Jung
Gesamtschule Brand, 52078 Aachen, Germany.
E-mail: jung@mndynamics.com

Dedicated to Mitsuhiro Shishikura for his $2 \cdot\left(2^{5}-1\right) n d$ birthday

Abstract

In complex dynamics the Thurston Theorem decides, whether a postcritically finite branched cover g is equivalent to a rational map f. In the general case this happens, if and only if there is no obstructing multicurve. In the exceptional case of orbifold type ($2,2,2,2$), however, the criterion is different. A Thurston map of this kind is described by a real-affine map on a torus, and there is an equivalent Lattès map, if and only if the 2×2 matrix has nonreal eigenvalues, or it is a multiple of the identity. Note that when g of type $(2,2,2,2)$ is unobstructed, there need not be an equivalent rational map f.

A geometric mating of two postcritically finite quadratic polynomials $P(z)=z^{2}+p$ and $Q(z)=z^{2}+q$ is a rational map f, which is conjugate to the topological mating, where the filled Julia sets of P and Q are glued along their boundaries. Moreover, f is combinatorially equivalent to the formal mating g or to the essential mating \widetilde{g}. When there are suitable identifications between postcritical points, f may be a Lattès map. Using polynomial combinatorics, it is shown here that there are precisely nine kinds of examples, such that \widetilde{g} is of type $(2,2,2,2)$, and the parameters p and q are not in conjugate limbs of the Mandelbrot set. It turns out that a rational map f exists in every case. In the general situation of a hyperbolic orbifold, the corresponding result was obtained by Rees-Shishikura-Tan [TL], who showed that \widetilde{g} is unobstructed. In the exceptional case of type $(2,2,2,2)$, we need to check the eigenvalues of the matrix associated to \widetilde{g}, which is done by applying the Shishikura Algorithm to each example individually.

The direct or indirect identifications between postcritical points are understood by collapsing ray-equivalence classes of the formal mating g, which defines the essential mating \widetilde{g}.

1 Introduction

A Lattès map of type $(2,2,2,2)$ is a postcritically finite rational map $f: \widehat{\mathbb{C}} \rightarrow$ $\widehat{\mathbb{C}}$ with four postcritical points, whose critical points are non-degenerate and not postcritical. It is projected from an unbranched cover of a torus, or from an affine map $\mathbb{C} \rightarrow \mathbb{C}$ modulo $w \mapsto-w$. Thurston maps of type $(2,2,2,2)$ are described by affine maps of \mathbb{R}^{2}, and many properties are obtained explicitly from integer matrices.
iteration, pcf, Thurston
remainder in paragraphs corresponding to sections
dfns mating, question of convergence for $(2,2,2,2)$ orbifold
refs Milnor $1 / 4 \mathrm{v} 1 / 4$ several aspects, including gamma and tilings and measure, here answering question on uniqueness of a semi-conjugation

For the Lattès map of type $(2,4,4)$, there are precisely three kinds of matings, and the slow mating algorithm converges in each case.

Figure 1: The formal self-mating $1 / 6 \sqcup 1 / 6$ is shown in the left cartoon by drawing the Hubbard trees in blue and red, the equator in green, and two postcritical ray connections in black. These are simple rays with the angles $1 / 3$ and $2 / 3$, respectively. The middle sketch illustrates the essential mating, where these ray connections are collapsed. The preimage on the right shows that these structures are not invariant under pullback, but there are more branches and more identifications.

Acknowledgment: Several colleagues have contributed to this work by inspiring discussions and helpful suggestions. I wish to thank in particular Laurent Bartholdi, Arnaud Chéritat, Dzmitry Dudko, Mikhail Hlushchanka, John Hamal Hubbard, Sarah Koch, Russell Lodge, Michael Mertens, Daniel Meyer, Carsten Petersen, Kevin Pilgrim, Mary Rees, Dierk Schleicher, Nikita Selinger, and Dylan P. Thurston. This research was partially supported by Dierk Schleicher's ERC grant HOLOGRAM.

2 A worked out example of mating

3 Lattès maps and Thurston maps

3.1 Lattès maps

Consider a lattice $\Lambda=\mathbb{Z} \cdot 1+\mathbb{Z} \cdot \xi \subset \mathbb{C}$ with $\operatorname{Im}(\xi)>0$, and an affine map $L(w)=\eta \cdot w+\kappa$ with $\eta \cdot \Lambda \subset \Lambda$, which covers a self-map of the torus \mathbb{C} / Λ. If Λ and L have additional symmetries, we obtain a postcritically finite rational map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of degree $d=|\eta|^{2}$, a Lattès map. Under the symmetry $w \mapsto-w$ in particular, with $\kappa \in \Lambda / 2, f$ has four postcritical points and all critical points are non-degenerate and not postcritical, which is symbolized by the orbifold type $(2,2,2,2)$. There is an even Weierstraß function $\wp: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ with $f \circ \wp=\wp \circ L$. Probably the best known examples are flexible or integral Lattès maps, which exist when d is a square: for $\eta=\sqrt{d}$ the generator ξ is arbitrary, giving a one-parameter
family of quasi-conformally conjugate rational maps, having invariant line fields. We shall see that already in degree $d=2$, Lattès maps have many interesting properties, e.g., related to the Thurston theory and to matings. See [pasteMilnor, lattesMilnor, $\mathrm{BM}]$ for other properties and alternative characterizations.

Figure like [SY] or [pasteMilnor]. explain geometry $\Lambda, \Lambda / 2$, torus, pillowcase, sphere. cover is branched on $\Lambda / 2$, maps to postcritical set P of $f . f^{-1}(P)=\Omega \cup P$

From now on, we assume the degree is $|\eta|^{2}=2$. Since $\eta \cdot \Lambda \subset \Lambda$, there are integers a, b, c, d such that

$$
\begin{equation*}
\eta \cdot 1=a+c \xi \quad \eta \cdot \xi=b+d \xi \tag{1}
\end{equation*}
$$

Due to the symmetry $w \mapsto-w, f$ is covered by another map as well, where η is replaced with $-\eta$, but η^{2} characterizes f. Different choices of κ may give equivalent maps, cf. Proposition 3.1.2. A change of ξ means choosing a different fundamental cell in the same lattice Λ, and the matrix A with components a, b, c, d will be conjugated with a matrix $S \in S L_{2}(\mathbb{Z})$. In the quadratic rational case, we always have $b c \neq 0$, and $\operatorname{Im}(\eta)=\operatorname{Im}(c \xi) \neq 0$. Now (1) gives the following relations,

$$
\begin{equation*}
\eta^{2}-(a+d) \eta+2=0 \quad c \xi^{2}+(a-d) \xi-b=0 \tag{2}
\end{equation*}
$$

and the determinant is $a d-b c=2$. In particular, we have $|a+d| \leq 2$ and there are only finitely many values possible for η^{2}. Moreover, there are only three branch portraits of type $(2,2,2,2)$ in degree two. Grouping complex conjugate maps together, it turns out there are four cases of quadratic rational maps of type ($2,2,2,2$); an overview is given in Table 1.

3.2 The Thurston characterization

define Thurston map g, postcritical set P, marked set Z, Thurston's combinatorial equivalence \sim
question of rational map, reference to obstructions
application to constructing rational maps, and matings in particular.
A quadratic Thurston map of type (2, 2, 2, 2) can be constructed as follows: take the lattice $\Lambda=\mathbb{Z}^{2} \subset \mathbb{R}^{2}$, fix an even cover $\mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \widehat{\mathbb{C}}$, choose an affine map $L(\vec{x})=A \vec{x}+\vec{\kappa}$ with $A \in \mathbb{Z}^{2 \times 2}$ of determinant 2 and $\vec{\kappa} \in \mathbb{Z}^{2} / 2$, and define $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that it is covered by L. The notation

$$
A=\left(\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right) \quad: \quad\binom{d}{-c} \mapsto\binom{2}{0} \quad, \quad\binom{-b}{a} \mapsto\binom{0}{2}
$$

is compatible with (1) and (2); so η is an eigenvalue of A and ξ corresponds to the second base vector, if it is not real. Conversely, every quadratic Thurston map g of type $(2,2,2,2)$ is equivalent to a map covered by an affine map in this way. See [DH, book2, BM, SY] for the proof, which is based on the intermediate lift to a torus and on the identification of a homology group with \mathbb{Z}^{2}, or on the notion of a universal orbifold cover.

Proposition 3.1 ()

1. A quadratic Thurston map $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is of type $(2,2,2,2)$, if it has four postcritical points and no critical point is postcritical. Assuming that there are no

Quadratic rational Lattès maps f of type (2, 2, 2, 2)	
Branch portrait a) and b) $\begin{aligned} & \Rightarrow \bullet \searrow \\ & \Rightarrow \bullet \nearrow \end{aligned}$	c) d) $\begin{array}{llll}\Rightarrow \bullet \rightarrow \bullet \uparrow & \Rightarrow \bullet \rightarrow & \bullet \\ \Rightarrow \bullet \rightarrow \bullet \uparrow & \Rightarrow \bullet \rightarrow & \downarrow\end{array}$
a) $u=1 \pm \sqrt{2}, \eta^{2}=-2, \kappa=0$ b) $c= \pm \mathrm{i}, \eta^{2}=\mp 2 \mathrm{i}, \kappa=0$	c) $c=\frac{1 \pm \sqrt{7 i}}{4}, \eta^{2}=\frac{-3 \mp \sqrt{7 i}}{2}, \kappa=0$ d) $c=\frac{1 \pm \sqrt{7} \mathrm{i}}{2}, \eta^{2}=\frac{-3 \pm \sqrt{7} \mathrm{i}}{2}, \kappa=1 / 2$
a) is symmetric under complex conjugation, b) under inversion.	Both c) and d) are symmetric under inversion.
The Thurston pullback σ_{f}, the pullback of simple closed curves, and the virtual endomorphism $\Phi_{f}: H \rightarrow G$ of the pure mapping class group are of finite order.	All of these relations have no periodic orbits except for the obvious fixed points.
In a symmetric cover, σ_{f} projects to an isomorphism of moduli space, and a moduli space map k exists there.	The correspondence on moduli space is not reduced in a covering space.
Some iterate of f is a flexible Lattès map.	No iterate of f is flexible.
Quadratic Thurston maps g of Lattès type (2, 2, 2, 2)	
The trace of A is even. All values of $\vec{\kappa}$ are equivalent.	The trace is odd. Changing $\vec{\kappa}$ gives either c) or d).
g cannot have an obstruction.	g may be obstructed.

Table 1: Up to conjugation with a Möbius transformation or complex conjugation, there are four cases of quadratic rational maps of type (2, 2, 2, 2) ; see Sections 3.4 and 3.5 for concrete formulas. Thurston maps of type (2, 2, 2, 2) are discussed in Sections 3.2 and 3.3.
additional marked points, it is combinatorially equivalent to a map covered by a real affine map $L(\vec{x})=A \vec{x}+\vec{\kappa}$ on the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$ modulo $\vec{x} \mapsto-\vec{x}$.
2. The possible branch portraits according to Table 1 are related to the parity of the trace $t=a+d$:

- When t is even, the branch portrait is a)b), and all values of the translation $\vec{\kappa} \in \mathbb{Z}^{2} / 2$ give conjugate affine maps L.
- When t is odd, changing $\vec{\kappa}$ gives two different affine conjugacy classes, which correspond to the branch portraits of case c) and d), respectively.

3. Suppose the Thurston maps g and \tilde{g} are covered by the affine maps $L(\vec{x})=A \vec{x}+\vec{\kappa}$ and $\widetilde{L}(\vec{x})=\widetilde{A} \vec{x}+\vec{\kappa}$, respectively. Then \widetilde{g} is combinatorially equivalent to g, if and only if A is conjugate to $\pm A$ with a conjugator $S \in S L_{2}(\mathbb{Z})$, and the translations are conjugate as well.

Proof: 1. See the references given above, and [SY] for the case of additional marked points; then a lift is possible unless there are removable Lévy cycles.
2. The branch portrait is obtained by checking all combinations of parity; a priori there are sixteen combinations, but a few are ruled out by determinant 2. An
explicit calculation checks whether two translations in $\mathbb{Z}^{2} / 2$ are equivalent in \mathbb{Z}^{2} by conjugating with a translation in $\mathbb{Z}^{2} / 2$.
3. Combinatorial equivalences ψ_{0}, ψ_{1} are covered by maps isotopic to the same affine map; this map sends $\mathbb{Z}^{2} / 2$ to itself, so $S \in S L_{2}(\mathbb{Z})$. We cannot distinguish between A and $-A$, since the cover identifies \vec{x} and $-\vec{x}$.

Theorem 3.2 (Thurston characterization)

Consider a quadratic Thurston map $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of type (2, 2, 2, 2), which is covered by the real affine map $L(\vec{x})=A \vec{x}+\vec{\kappa}$ up to isotopy. Then g is combinatorially equivalent to a rational map f, if and only if the eigenvalues of A are not real, or equivalently, if the trace is $|t| \leq 2$.

Proof: If the eigenvalues are not real, determine ξ and η from (1) and (2) with $\operatorname{Im}(\xi)>0$. Conjugate L with an affine map $\mathbb{R}^{2} \rightarrow \mathbb{C}$, which is sending the base vectors to 1 and ξ. The new map will be of the form $\eta \cdot w+\kappa$, so it covers a rational Lattès map f. Conversely, any rational f is described by an affine map with nonreal eigenvalues according to the previous Section 3.1, and the matrices must be conjugate by Proposition 3.1.3.

Remark 3.3 (Lifting curves)

In practice, the affine lift of a Thurston map g can be obtained as follows: choose a simple closed curve γ through the four postcritical points, and cover $\widehat{\mathbb{C}}$ by $\mathbb{R}^{2} / \mathbb{Z}^{2}$ such that the interior of γ is covered by $[0,1 / 2]^{2}$. Lift $\gamma^{\prime}=g^{-1}(\gamma)$ to \mathbb{R}^{2}. The curves will be \mathbb{Z}^{2}-periodic and isotopic to straight lines through lattice points. Choose a fundamental cell and determine the affine map L sending this parallelogram to $[0,1]^{2}$. The coefficients of A are read off from (3). Of four adjacent cells, two will give an orientation-preserving map, and these two give $\pm A$.

3.3 The Thurston pullback

dfn Teichmüller space, moduli space, and pullback map σ_{g}; fixed point gives equivalence to rational map [DH, book2, teich]

In the previous Section 3.2, we have characterized Thurston maps of type $(2,2,2,2)$ in terms of the trace $t=a+d$ of an associated matrix A, and it was not necessary to consider the pullback map. Now σ_{g} shall be discussed as well for two reasons: to compare the pullback behavior to maps of type not $(2,2,2,2)$, see also Remark ??. And because the convergence properties of the Thurston Algorithm for certain matings will be investigated in Section 5; it turns out that locally in the higher-dimensional space, there is an invariant center manifold, where the pullback behaves as in the case of type ($2,2,2,2$).

Theorem 3.4 (Thurston pullback)

Suppose $g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a quadratic Thurston map of type (2, 2, 2, 2), without additional marked points. Then Teichmüller space \mathcal{T} is identified with the upper halfplane, and the Thurston pullback is given by a Möbius transformation

$$
\begin{equation*}
\sigma_{g}(\tau)=\frac{d \tau+b}{c \tau+a} \tag{4}
\end{equation*}
$$

with integer coefficients and determinant 2. There are two possible cases:

- σ_{g} has a unique fixed point in the upper halfplane \mathcal{T}. Then g is combinatorially equivalent to a rational Lattès map f, which is unique up to Möbius conjugation. The fixed point is neutral with multiplier $\rho=2 / \eta^{2}$.
- σ_{g} does not have a fixed point in \mathcal{T}, there is no equivalent rational map, and the Thurston pullback $\tau_{n}=\sigma_{g}^{n}\left(\tau_{0}\right)$ diverges to the boundary of \mathcal{T}.

Proof: explain pullback of constant Beltrami coefficient This gives (4), where a, b, c, d are the coefficients of the matrix A. Now $\sigma_{g}(\tau)=\tau$ yields the same equation as (2) for ξ, so a fixed point τ in the upper halfplane exists, if and only if there is a ξ with $\operatorname{Im}(\xi)>0$. A short computation gives $\sigma_{g}^{\prime}(\xi)=2 / \eta^{2}$.

Remark 3.5 (Thurston obstructions)

When g is not of type ($2,2,2,2$), the Thurston pullback is weakly contracting, so a fixed point is unique and globally attracting. An obstructing multicurve Γ for a Thurston map g has certain properties under pullback, which imply that in the Riemann surfaces defined by τ_{n}, corresponding hyperbolic geodesics get shorter and annuli get thicker, which may prevent convergence. When g is not of type (2, 2, 2, 2), the Thurston Theorem says that g is equivalent to a rational map, if and only if it is unobstructed. This is not true if g is of Lattès type $(2,2,2,2)$:

- When g is quadratic and the matrix A from the affine lift of g has trace $|t| \geq 4$, there will be no obstruction, but g is not equivalent to a rational map either. The pullback is bounded in moduli space, but diverges to the boundary in Teichmüller space.
- Only for $|t|=3$, there is an obstruction, and the iteration diverges to the boundary in moduli space as well, since the obstruction is pinching. According to Selinger [char], invariant essential curves are related to integer eigenvectors of A, and so determinant 2 requires trace ± 3. Note that an obstructed map will be of case c) or d) according to Proposition 3.1.2. Alternatively, the core arc argument shows that maps of case a)b) are unobstructed, since an invariant essential curve would contradict the branch portrait.
- Quadratic rational maps are always unobstructed, but when the degree is a square, there exists a family of flexible Lattès maps, which have a non-pinching obstruction in fact.

3.4 The rational maps of cases a) and b)

Now we shall determine the quadratic rational Lattès maps f of type $(2,2,2,2)$ explicitly, by observing the branch portraits visualized in Table 1. See also [pasteMilnor, lattesMilnor]. The pullback correspondence on moduli space is discussed as well. The affine maps from the previous Sections 3.2-3.3 will not be used to obtain f; but to see which rational map corresponds to which value of η, either the relation $\rho=2 / \eta^{2}$ can be employed, or the fact that a fixed point of f has multiplier $\pm \eta$ if it is not postcritical, and multiplier η^{2} if it is.

The branch portrait of cases a) and b) is the same: both critical values are mapped to the same prefixed point. Assume that the critical points are 0 and ∞, so that f is even, and put the postcritical fixed point at 1 , so $f(\pm 1)=1$. Denoting the critical values by $f(0)=u$ and $f(\infty)=-u$, we have functions of the form F_{u}
with

$$
\begin{equation*}
F_{u}(z)=-u \frac{z^{2}+\frac{1+u}{1-u}}{z^{2}-\frac{1+u}{1-u}} \quad F_{u}^{-1}(z)=\sqrt{\frac{1+u}{1-u} \cdot \frac{z-u}{z+u}} . \tag{5}
\end{equation*}
$$

These functions will be used both for the Thurston pullback, where the parameter u varies, and to determine specific values of u representing Lattès maps. Now the condition $F_{u}(\pm u)=-1$ gives $\left(u^{2}+1\right)\left(u^{2}-2 u-1\right)=0$.

Case a) is given by $u=1 \pm \sqrt{2}$, so $F_{1 \pm \sqrt{2}}(z)=-(1 \pm \sqrt{2}) \frac{z^{2}-(1 \pm \sqrt{2})}{z^{2}+(1 \pm \sqrt{2})}$. The two maps are real in this normalization, not symmetric under inversion, but they are transformed into each other by the inversion in fact; so they belong to the same combinatorial equivalence class. We have $\eta^{2}=F_{1 \pm \sqrt{2}}^{\prime}(1)=-2$ and $\kappa=0$.

Case b) shall denote the maps with $u= \pm \mathrm{i}, F_{ \pm \mathrm{i}}(z)=\mp \mathrm{i} \frac{z^{2} \pm \mathrm{i}}{z^{2} \mp \mathrm{i}}$. The two maps are complex conjugate to each other, and each is invariant under conjugation with the inversion $z \mapsto 1 / z$, so it can be written in the form $f_{ \pm \mathrm{i}}(z)=\frac{z^{2} \pm \mathrm{i}}{1 \pm \mathrm{i} z^{2}}$ according to (7) as well. Computing $F_{u}^{\prime}(1)=\left(1-u^{2}\right) / u$ gives $\eta^{2}=-2 \mathrm{i}$ for f_{i} and $\eta^{2}=2 \mathrm{i}$ for $f_{-\mathrm{i}}$, and we may assume $\kappa=0$.

In this normalization at 0 and ∞, moduli space is given by $u \in \widehat{\mathbb{C}} \backslash\{0, \infty,-1,1\}$. In case a) or b), the Thurston pullback σ_{f} of f defines a correspondence on moduli space, such that u is pulled back to u^{\prime}. Now u determines F_{u} by its critical values, and u^{\prime} satisfies $F_{u}\left(\pm u^{\prime}\right)=-1$ since $F_{u}(-1)=1$. This example has the special property, that the correspondence is reducible: (5) gives

$$
\begin{array}{lll}
u^{\prime}= \pm \frac{1+u}{1-u}, & \text { a) } u^{\prime}=-\frac{1+u}{1-u} & \text { b) } u^{\prime}=+\frac{1+u}{1-u} \tag{6}
\end{array}
$$

Here the sign is determined from the known values of u at the fixed point of σ_{f}; it is the same sign globally by analytic continuation. The multiplier ρ of the Thurston pullback is computed either from (6) or from the general relation $\rho=2 / \eta^{2}$, which gives $\rho=-1$ in case a), and $\rho= \pm \mathrm{i}$ for $F_{ \pm \mathrm{i}}=f_{ \pm \mathrm{i}}, \eta^{2}=\mp 2 \mathrm{i}$ of case b).

Remark 3.6 ()

1. The Thurston pullback map is of finite order, σ_{f}^{2} or σ_{f}^{4} is the identity. This can be seen either from the fact that it is a Möbius transformation of the upper halfplane with a rationally neutral fixed point, or by noting that at its fixed point, σ_{f} is analytically conjugate to a branch of the correspondence (6) on moduli space, and employing analytic continuation. Note that $\pi: \mathcal{T} \rightarrow \mathcal{M}$ is an infinite-to-one cover semiconjugating the Möbius transformation σ_{f} to the Möbius transformation (6). When g is a Thurston map of type (2, 2, 2, 2) with branch portrait a)b), the correspondence on moduli space is given by (6) as well, but σ_{f} will not be of finite order, if it does not have a fixed point.
2. In case a), f^{2} is a flexible Lattès map of degree four. Since f is represented as a geometric mating according to Theorem 4.3, the composition is represented by a mating, whose combinatorial equivalence class does not determine a unique Möbius conjugacy class; this observation is due to Pilgrim [pasteMilnor]. - Note that σ_{f} can be used to obtain a parametrization for the flexible family: with $u^{\prime}=-(1+u) /(1-u)$, define $I_{u}=F_{u} \circ F_{u^{\prime}}$. Analogously, case b) could be used to discuss the flexible Lattès family of degree sixteen.
3. The correspondence on moduli space is reducible only in the "even" normalization, which is a cover of ordinary moduli space in fact, see also Theorem ?? and

Example ??.

4. Since the maps $f_{ \pm \mathrm{i}}$ are symmetric under inversion, we may look at the pullback map restricted to symmetric maps. It turns out that this map is actually constant, since $f_{c}(\pm \mathrm{i})=-1$ for all parameters c. The multiplier ρ of σ_{f} should not depend on the normalization, but this use of symmetric maps is not a normalization. Locally there are two invariant manifolds, one with even maps and multiplier $\mp \mathrm{i}$, one with symmetric maps and multiplier 0; the first step of the pullback lands on the even one, and symmetric maps land on the fixed point. We shall see in Section ?? that slow mating converges for the self-mating of $z^{2}+\gamma_{M}(1 / 4)$, which is related to the eigenvalue of the invariant manifold being 0 instead of neutral.

3.5 The rational maps of cases c) and d)

Consider the following one-parameter families of quadratic rational maps, with $c \neq$ $\pm 1, u \neq 0,1$, or $u \neq \pm 1$. Again they are normalized with critical points 0 and ∞, and f_{c} is symmetric with respect to conjugation by the inversion $z \mapsto 1 / z$:

$$
\begin{equation*}
f_{c}(z)=\frac{z^{2}+c}{1+c z^{2}} \quad h_{u}(z)=\frac{z^{2}-\frac{2 u}{u+1}}{z^{2}-\frac{2}{u+1}} \quad H_{u}(z)=\frac{z^{2}-\frac{u+1}{2}}{z^{2}-\frac{u+1}{2 u}} \tag{7}
\end{equation*}
$$

Case c) is a Lattès map with disjoint critical orbits, such that both critical values are mapped to fixed points. Now h_{u} according to (7) satisfies $\infty \Rightarrow 1 \rightarrow-1 \uparrow$, and $0 \Rightarrow u \rightarrow-u \uparrow$ requires $h_{u}(\pm u)=-u$ or $u(u-1)\left(u^{2}+3 u+4\right)=0$; here $u=1$ is excluded and $u=0$ has a different branch portrait. So $u=(-3 \pm \sqrt{7} \mathrm{i}) / 2$ gives two complex conjugate Lattès maps h_{u}. It turns out tht these are rescaled to symmetric maps f_{c} with $c=(1 \pm \sqrt{7} \mathrm{i}) / 2$. We have $\eta^{2}=(-3 \pm \sqrt{7} \mathrm{i}) / 2$ and $\kappa=0$.

The Thurston pullback induces a correspondence on moduli space; $h_{u}\left(\pm u^{\prime}\right)=-u$ gives

$$
\begin{equation*}
h_{u}^{-1}(z)=\sqrt{\frac{2}{u+1} \cdot \frac{z-u}{z-1}}, \quad u^{\prime}=h_{u}^{-1}(-u)=\frac{2 \sqrt{u}}{u+1} . \tag{8}
\end{equation*}
$$

The irrationally neutral fixed points at $u=(-3 \pm \sqrt{7} \mathrm{i}) / 2$ have the multipliers $\rho=(-3 \mp \sqrt{7} \mathrm{i}) / 4$. There is a superattracting fixed point at $u=1$ indicating a possible pinching obstruction; $u=0$ is not attracting.

Case d) denotes a Lattès map with a postcritical 2-cycle. It shall have the following branch portrait: $0 \Rightarrow u \rightarrow-1 \leftrightarrow-u \leftarrow 1 \Leftarrow \infty$. This is provided by H_{u} if u satisfies $H_{u}(\pm u)=-1$, or $(u-1)\left(4 u^{2}+3 u+1\right)=0$. So there are two complex conjugate maps H_{u} with $u=(-3 \pm \sqrt{7} \mathrm{i}) / 8$. Again, they are rescaled to symmetric maps f_{c} with $c=(1 \pm \sqrt{7} \mathrm{i}) / 4$. Then $\pm \eta=f_{c}^{\prime}(1)$ shows $\eta^{2}=(-3 \mp \sqrt{7} \mathrm{i}) / 2$ for the affine lift, and $\kappa=1 / 2$ gives the correct branch portrait.

Now consider the Thurston pullback with $\pi(\tau)=u$ and $\pi\left(\sigma_{f}(\tau)\right)=u^{\prime}$ in the even normalization H_{u}. The correspondence on moduli space is determined from $H_{u}\left(\pm u^{\prime}\right)=-1$ as

$$
\begin{equation*}
H_{u}^{-1}(z)=\sqrt{\frac{u+1}{2 u} \cdot \frac{z-u}{z-1}}, \quad u^{\prime}=H_{u}^{-1}(-1)=\frac{u+1}{2 \sqrt{u}} . \tag{9}
\end{equation*}
$$

At the parameters $u=(-3 \pm \sqrt{7} \mathrm{i}) / 8$, a branch has a neutral fixed point with the multiplier $\rho=(-3 \pm \sqrt{7} \mathrm{i}) / 4=2 / \eta^{2}$. Note that $\rho^{2}+\frac{3}{2} \rho+1=0$ shows that the
fixed point is irrationally neutral; I do not know whether it is Brjuno, but a local branch of (9) will be linearizable anyway, because it is conjugate to the Möbius transformation σ_{f}. The pullback relation has a superattracting fixed point $u=1$ in addition, which does not correspond to a rational map, but indicates that Thurston maps with branch portrait d) may have a pinching obstruction.

In both cases c) and d) the Teichmüller space and moduli space contain another invariant manifold corresponding to symmetric maps. The pullback relation reads

$$
\begin{equation*}
\text { c) } \quad c^{\prime}=\sqrt{-\frac{2 c}{c^{2}+1}}, \quad \text { d) } \quad c^{\prime}=\sqrt{-\frac{c^{2}+1}{2 c}} . \tag{10}
\end{equation*}
$$

These pullback relations are locally conjugate to (8) and (9), respectively, via $u=c^{2}$. So they have the same neutral multiplier ρ at corresponding fixed points, in contrast to case a) according to Remark 3.6.4. - Note that the affine lifts of cases c) and d) have the same η^{2} but differ in the translation κ; the rational maps are related, e.g., as follows: if f_{c} is of case c), then $f_{1 / c}$ is of case d), and $f_{c}^{2}=f_{1 / c}^{2}$.

4 Lattès maps as matings

4.1 Polynomial dynamics and combinatorics

P, K, rays, landing, persistence behind root
In Sections 4.3 and 6, we shall need special results on periodic cycles, to find or to exclude certain types of ray connections, and to characterize essential matings with specific ramification portraits. Item 1 is proved by counting endpoints of Hubbard trees, and items 2 and 3 mean that a rotation number with high denominator is rigid with respect to small changes. See also Proposition 3.6.c in [raysJung].

Lemma 4.1 (Combinatorics of quadratic polynomials)

Consider a Misiurewicz polynomial $P(z)=z^{2}+p$.

1. Suppose p has preperiod k, and the corresponding periodic cycle of $P^{k}(p)$ persists from the root $p^{\prime} \prec p$. Then $k \geq 2$, and $k=2$ occurs only when p is real.
2. Suppose p has preperiod k and it belongs to a limb of denominator r. The periodic cycle of $P^{k}(p)$ shall have the same angles as the α-fixed point of another limb of the same denominator r :
a) If $k=1$, then $r=3$.
b) If $k=2$ and the two limbs are conjugate, then $r=3$ or $r=4$.
3. Suppose p, \tilde{p} are Misiurewicz points of preperiod 1 and belong to limbs of denominators r, \widetilde{r}. Now $P(p)$ shall have an angle of $\alpha_{\widetilde{p}}$ and $\widetilde{P}(\widetilde{p})$ shall have an angle of α_{p}. If $\tilde{r}<r$, then $\tilde{r}=2$ and $r=3$.

Recall that for each hyperbolic component with root $p^{\prime} \neq 1 / 4$, there is an associated cycle of primitive or satellite type, whose rays persist for all parameters $\mathrm{p} \succeq p^{\prime}$. Conversely, if a periodic cycle of P does not consist of endpoints, there will be a corresponding root $p^{\prime} \preceq p$. In particular, when p belongs to the limb of rotation number s / r, the fixed point α_{p} has an r-cycle of dynamic rays.

Proof: 1. First, assume that p^{\prime} is the root of a limb with rotation number s / r. Then $P^{k}(p)=\alpha_{p}$ requires $k \geq r$, so $k=1$ is excluded, and $k=2$ only for $r=2$ and the real parameter $p=\gamma_{M}(5 / 12)=\gamma_{M}(7 / 12)$. Second, assume the periodic cycle is z_{1}, \ldots, z_{m} with $m \geq 3$ and the characteristic point z_{1} separating p from the other points in the cycle. T is the Hubbard tree of P and $T^{\prime} \subset T$ the connected hull of the m-cycle. Then z_{1} and z_{2} are endpoints of T^{\prime}, and 0 is an inner point. p is behind z_{1} and $P(p)$ behind z_{2}, i.e., z_{2} is separating $P(p)$ from 0 . If $k=1$, then $P(p)$ is a periodic point z_{j} behind z_{2}, which contradicts z_{2} being an endpoint of T^{\prime}. If $k=2$, then z_{3} is not an endpoint of T^{\prime}, because $P^{2}(p)$ would be a periodic point behind it, noting that P is injective on $\left[z_{1}, p\right]$ and on $\left[z_{2}, P(p)\right]$, and an arc before z_{2} would be mapped before z_{3}. So T^{\prime} has only two endpoints, and $P^{2}(p) \in T^{\prime}$ implies that T has two endpoints as well, so p is real.

2a) For $r=2$, there is no other limb of the same denominator. For $r=3$, $p=\gamma_{M}(\pm 3 / 14)$ belongs to the limb with rotation number $\pm 1 / 3$, and it is mapped to the angle $\pm 3 / 7$, which belongs to α of the conjugate limb. For $r \geq 4$ we shall obtain a contradiction: Denote the sectors at α_{p} by W_{1}, \ldots, W_{r} in the order of the orbit of p, with $p \in W_{1}$ and $0 \in W_{r}$. The periodic r-cycle of $P(p)$ shall be labeled such that it has corresponding indices, so $z_{2}=P(p) \in W_{2}, \ldots, z_{r}=P^{r-1}(p) \in W_{r}$, and $z_{1}=P^{r}(p)$. Now z_{1} is the periodic preimage of z_{2}, so $z_{1}=-p$ is behind $-\alpha_{p}$ and belongs to W_{r}. The periodic points are endpoints by item 1 , and we are interested in the cyclic order of their angles θ_{j}. Since θ_{r} and θ_{1} are the only angles in W_{r}, the rotation number must be $\pm 1 / r$. Compare these angles to the original sectors: we have removed position 1 and added a new position 1 next to position r. If $r \geq 4$, there are at least two neighboring positions left unchanged, so the rotation number was ± 1 in the limb of p already. This contradicts the hypothesis and item 1 .

2b) For $r=3$ or $r=4$ we have $p=\gamma_{M}(\pm 5 / 28)$ and $p=\gamma_{M}(\pm 7 / 60)$, respectively. For $r=5$ and $r=6$, no solution is found. It remains to obtain a contradiction for $r \geq 7$: We have $p \in W_{1}, P(p) \in W_{2}, P^{2}(p)=z_{3} \in W_{3}, \ldots, P^{r-1}(p)=z_{r} \in W_{r}$, $P^{r}(p)=z_{1}$, and $P^{r+1}(p)=z_{2}=-P(p) \in W_{r}$. Now z_{1} is mapped into W_{r}, so $z_{1} \in W_{r-1}$ or $z_{1} \in W_{r}$.
Case 1: $z_{1} \in W_{r-1}$ and in W_{r} we have, say, the cyclic order z_{r} before z_{2}. Then the new rotation number is s^{\prime} / r with $s^{\prime}=(r+1) / 2$, so the old one was s / r with $s=(r-1) / 2$. It turns out that compared to the order of the original sectors, two neighboring positions are swapped two times; position 1 is swapped with $r-1$, and position r swapped with 2. But there are other positions jumping over two neighbors, so the rotation number could not have changed.
Case 2: $z_{1} \in W_{r}$ and in W_{r} we have s^{\prime} steps from z_{r} to z_{1} and from there to z_{2} as well. So without restriction assume $s^{\prime}=1$. Then z_{r-1} comes directly before z_{r} regarding the cyclic order of angles. Since we have no periodic points in W_{1} and W_{2}, only these could be between W_{r-1} and W_{r}, so the old number of steps s was 1,2 , or 3 . This contradicts $s+s^{\prime}=r$.
3. For $r=3$ and $\widetilde{r}=2$, we have $p=\gamma_{M}(\pm 1 / 6)$ and $\widetilde{p}=\gamma_{M}(\mp 5 / 14)$. So suppose p has rotation number s / r with $r \geq 4$. We may assume $s / r<1 / 2$. Denoting the sectors at α_{p} by W_{1}, \ldots, W_{r} again, the periodic points are in W_{2}, \ldots, W_{r} : the latter sector is the first one mapped back to W_{2}, so $\widetilde{r}=r-1$. There are $2 s-1$ steps from z_{r} to its image z_{2} and s steps from z_{r-1} to z_{r}. So $s=1, \alpha_{p}$ has rotation number $1 / r$ and $\alpha_{\tilde{p}}$ has $1 /(r-1)$. The possible angles of the endpoint \widetilde{p} are determined from
the inequality $\frac{1}{2^{r-1}-1}<\frac{5}{2\left(2^{r}-1\right)}<\frac{7}{2\left(2^{r}-1\right)}<\frac{2}{2^{r-1}-1}$. However, doubling the two angles in the middle does not give an angle of α_{p}, which is of the form $\frac{2^{j}}{2^{r}-1}$.

4.2 Definitions of mating

Theorem 4.2 ()

pcf non-conjugate limbs: RST, Th, RS

4.3 Lattès maps of type ($2,2,2,2$) as matings

Up to inversion and complex conjugation, we have four rational maps f and nine matings g to consider. Shishikura has found seven of these matings and determined, which formal mating g corresponds to which rational function f. His algorithm is described in [pasteMilnor] and in Section 5. The results are reported in the following Table 2. Interchanging P and Q conjugates the mating with an inversion, and reflection of both angles means complex conjugation of P and Q and of the rational map. Altogether we have thirty matings for eight rational maps up to linear conjugation, or seven rational maps up to Möbius conjugation.

	$L(w)=\eta w+\kappa$	$\rho=$	f_{c}, F_{u}	mating	anti-mating
a)	$\kappa=0, \eta^{2}=-2$	-1	$u=1 \pm \sqrt{2}$	$f \simeq \pm 1 / 12 \amalg 5 / 12$	-
b)	$\kappa=0, \eta^{2}=2 \mathrm{i}$	-i	$c=-\mathrm{i}$	$f \cong 3 / 4 \amalg 3 / 4$	$f \cong 1 / 4 \Pi 1 / 4$
				$f \simeq 5 / 28 \amalg 13 / 28$	
				$f \simeq 7 / 60 \amalg 29 / 60$	
c)	$\kappa=0$,	$\frac{-3-\sqrt{7 i}}{4}$	$c=$	$f \cong 1 / 6 \amalg 5 / 14$	
	$\eta^{2}=\frac{-3+\sqrt{7} \mathrm{i}}{2}$		$\frac{1+\sqrt{7 \mathrm{i}}}{2}$	$f \cong 3 / 14 \amalg 3 / 14$	$f \cong 5 / 6 \Pi 5 / 6$
				$f \simeq 3 / 14 \amalg 1 / 2$	
				$f \simeq 5 / 6 \amalg 1 / 2$	
d)	$\kappa=1 / 2$,	$\frac{-3-\sqrt{7} \mathrm{i}}{4}$	$c=$	$f \cong 5 / 6 \amalg 5 / 6$	$f \cong 3 / 14 \Pi 3 / 14$
	$\eta^{2}=\frac{-3+\sqrt{7} \mathrm{i}}{2}$		$\frac{1-\sqrt{7} \mathrm{i}}{4}$		and more ??

Table 2: According to Definition 2.2 in [raysJung], \cong means the rational map is topologically conjugate to the topological mating in the usual normalization, angle 0 at $z=1$, and \simeq indicates that a rotation of the fixed points is applied in addition. The symmetric anti-matings are obtained from the following result [antiJung]: if $f_{c} \cong P \amalg P$, then $f_{1 / c} \cong P \Pi P$. There may be further representations by non-symmetric anti-matings.

Theorem 4.3 (Lattès matings, following Shishikura)

1. There are precisely 30 formal matings $g=P \sqcup Q$ of quadratic polynomials, such that the essential mating \widetilde{g} has a parabolic orbifold of type (2, 2, 2, 2), and the parameters p and q are not in conjugate limbs of the Mandelbrot set. Up to complex conjugation and interchanging P and Q, these matings are represented by the nine matings in Table 2.
2. In each case, the essential mating \tilde{g} is combinatorially equivalent to a rational map $f \simeq P \amalg Q$, which is given in the table as well. So f is a geometric mating in fact, conjugate to the topological mating.

The nine kinds of formal matings are obtained below, and the corresponding rational maps are identified as combinatorial matings in Section 5 from the Shishikura Algorithm; this completes the proof of the Rees-Shishikura-Tan Theorem 4.2 for orbifold type (2, 2, 2, 2). By the Rees-Shishikura Theorem [RS], the combinatorial mating is a geometric mating as well. To prove there are only nine cases up to Möbius transformation and complex conjugation, we shall employ the following ideas:

- If \widetilde{g} has a postcritical fixed point, a postcritical point of g must belong to a fixed ray-equivalence class. By an observation of Sharland [...], a ray-equivalence class fixed by g must contain a fixed point of P or Q. See Proposition 2.6 in [raysJung] for a more detailed description of rational ray-equivalence classes.
- The ray-equivalence class of β is a single ray, but the class of α provides more possibilities. To build longer ray connections, rays from different cycles are joined at periodic points, which persist from primitive hyperbolic components before the current parameters. In principle these connections can be arbitrarily long, but when a ray-equivalence class contains an α-fixed point, there will be no primitive hyperbolic component of the same ray period in that limb.
- For a Misiurewicz point of low preperiod k in a limb of high ray period r, the corresponding periodic cycle will follow the rotation for several steps; in certain situations, this places a restriction on r. Specific results were obtained in Lemma 4.1 from polynomial combinatorics.

We shall frequently speak of rays with angle θ connecting \mathcal{K}_{p} and $\mathcal{K}_{\bar{q}}$; this gives an accurate description of the combinatorics without taking complex conjugate angles all the time, but geometrically it means that the θ-ray of \mathcal{K}_{p} is joined with the ray of angle $-\theta$ at \mathcal{K}_{q}.

Proof of uniqueness for the branch portrait of cases a)b): Since the essential mating maps both critical values to the same prefixed point, $P^{2}(p)$ and $\bar{Q}^{2}(\bar{q})$ must belong to the same ray-equivalence class, which is fixed by the formal mating g. If this is the 0 -ray, we have $p=q=\gamma_{M}(\pm 1 / 4)$ since $p=\bar{q}$ is excluded. Otherwise this class contains an α-fixed point of P or \bar{Q}; by Möbius conjugation we may assume it to be α_{p}, as the branch portrait is symmetric.

1. Suppose $P^{2}(p)=\alpha_{p}$, then p is real by Lemma 4.1.1 since the preperiod is $k=2$. So $p=\gamma_{M}(5 / 12)=\gamma_{M}(7 / 12)$ and the only remaining angles of the same denominator are $1 / 12$ and $11 / 12$. Taking one of these for \bar{q} is seen to work, since \bar{q} is not in the same limb as p, and $\bar{Q}^{2}(\bar{q})$ shares an angle with α_{p}.
2. Now suppose that $P^{2}(p)$ is connected to α_{p}. This connection goes through only one primitive cycle of \bar{Q} and $P^{2}(p)$ is an endpoint of the ray-equivalence class, since there is only one hyperbolic component with the ray period of α_{p} in the limb of p. Thus $\bar{Q}^{2}(\bar{q})$ must belong to the same primitive cycle of \bar{Q}, and by Lemma 4.1.1 again, \bar{q} is real. So the cycle is real and joins complex conjugate angles; the angle of $P^{2}(p)$ is complex conjugate to an angle of α_{p}. Now Lemma 4.1.2b says that p is in a limb of ray period 3 or 4 . Each of these limbs has a unique angle with the required denominator, which defines p, and a unique \bar{q} is found to work: it is real and the primitive cycle at $\bar{Q}^{2}(\bar{q})$ shares angles with both $P^{2}(p)$ and α_{p}. This gives $\pm 5 / 28 \amalg 13 / 28$ and $\pm 7 / 60 \amalg 29 / 60$.

Proof of uniqueness in case c): In the essential mating \widetilde{g}, the critical values are mapped to different fixed points; in the formal mating $g, P(p)$ and $\bar{Q}(\bar{q})$ belong to distinct fixed ray-equivalence classes. Up to Möbius conjugation, we have the following possibilities:

1. If both classes contain β-fixed points, so $p=\bar{q}=-2$, we are in conjugate limbs. The classes are not actually distinct and the essential mating is undefined, since the critical values would coincide. The topological mating would be defined on a line segment instead of a sphere. In this case, the formal mating is of type $(2,2,2,2)$ in fact, and it is obstructed with trace ± 3.
2. Suppose $\bar{Q}(\bar{q})=\beta_{\bar{q}}$ and $P(p)$ is in the ray-equivalence class of α_{p}. Preperiod $k=1$ and Lemma 4.1.1 give $P(p) \neq \alpha_{p}$. The ray connection from $P(p)$ to α_{p} passes through a single periodic point of \bar{Q}, and the angle is complex conjugated since $\bar{q}=-2$ is real. So $P(p)$ shares its angle with $\alpha_{\bar{p}}$. By Lemma 4.1.2a, we have $p=\gamma_{M}(\pm 3 / 14) \in \mathcal{M}_{ \pm 1 / 3}$. The angle $\pm 3 / 7$ of $P(p)$ is reflected at the Airplane characteristic point in $\mathcal{K}_{\bar{q}}$ to become $\pm 4 / 7$, which is an external angle of α_{p}.
3. Suppose $\bar{Q}(\bar{q})=\beta_{\bar{q}}$ and $P(p)$ is in the ray-equivalence class of $\alpha_{\bar{q}}$, which consists of the rays with angles $\pm 1 / 3$. This gives $p=\gamma_{M}(\pm 1 / 6)$.
4. Suppose $P(p)$ is connected to α_{p} and $\bar{Q}(\bar{q})$ is connected to $\alpha_{\bar{q}}$. Since $k=1$, Lemma 4.1.1 gives $P(p) \neq \alpha_{p}$ and $\bar{Q}(\bar{q}) \neq \alpha_{\bar{q}}$. So the former ray-equivalence class contains a primitive cycle of \bar{Q}, whose period is greater than the ray period of $\alpha_{\bar{q}}$ and the same as the ray period of α_{p}. But by the same arguments, the ray period of $\alpha_{\bar{q}}$ is greater than that α_{p}, which is a contradiction.
5. Suppose $P(p)$ is connected to $\alpha_{\bar{q}}$ and $\bar{Q}(\bar{q})$ is connected to α_{p}. These connections must be direct, since a longer connection would require a primitive hyperbolic component before p but with period exceeding the ray period of that limb, or analogously for the limb of \bar{q}. So $P(p)$ shares its angle with $\alpha_{\bar{q}}$ and $\bar{Q}(\bar{q})$ shares its angle with α_{p}. The ray periods may be equal or different. In the former case, Lemma 4.1.2a gives $p=q=\gamma_{M}(\pm 3 / 14) ; P(p)$ has the angle $\pm 3 / 7$, which is found at $\alpha_{\bar{q}}$ as well. When the ray periods are different, Lemma 4.1.3 gives $p \in \mathcal{M}_{ \pm 1 / 3}$ and $\bar{q} \in \mathcal{M}_{1 / 2}$ or vice versa. So $P(p)$ has the angle $1 / 3$ or $2 / 3$, yielding $p=\gamma_{M}(\pm 1 / 6)$, and $\bar{Q}(\bar{q})$ has $\pm 1 / 7, \pm 2 / 7$, or $\pm 4 / 7$. This gives $\bar{q}=\gamma_{M}(\pm 9 / 14)$ and $q=\gamma_{M}(\pm 5 / 14)$.

Proof of uniqueness in case d): In the essential mating, both critical values shall be mapped to the unique 2-cycle. For $\pm 1 / 6 \amalg \pm 1 / 6$ this works, because the 2 -cycles of P and \bar{Q} have direct ray connections. See Figure 1. Suppose we had a different formal mating with a 2-cycle of ray-equivalence classes, which contain $P(p)$ and $\bar{Q}(\bar{q})$, respectively. Without restriction, the 2-cycle of P is of satellite type and forms the symmetry centers of these ray-equivalence classes, and p is in a sublimb of the period- 2 component of \mathcal{M}. Since the preperiod is $k=1$, Lemma 4.1.1 shows that p is an endpoint of \mathcal{M} and $P(p)$ is an endpoint of its ray-equivalence class. So $\bar{Q}(\bar{q})$ is an interior point of the other ray-equivalence class; it is of primitive type in contradiction to preperiod $k=1$.

5 The Shishikura Algorithm

both proof of matability and identification.
note only one shared encapture, which gives that case a) is real.

Figure 2: ...

Remark 5.1 (Petersen transformation)

6 Lattès maps of type (2, 4, 4)

The notion of an orbifold, its type and its universal cover, is explained in [bookMilnor]. Most types of Thurston maps g or postcritically finite rational maps f have hyperbolic orbifold, but there are a finite number of types with parabolic orbifold [DH, book 2 H$]$. These maps are covered by affine maps on a cylinder or a torus; the latter are Lattès maps [pasteM, lattesM, BM]. We have three examples of the former in the quadratic case: $z^{ \pm 2}$ is of type (∞, ∞) and $z^{2}-2$ of type $(2,2, \infty)$. The polynomials are trivial matings $z^{2} \cong z^{2} \amalg z^{2}$ and $\left(z^{2}-2\right) \simeq\left(z^{2}-2\right) \amalg z^{2}$. When only postcritical points are marked, the Thurston pullback of the formal mating is undefined for z^{2}, constant for $z^{2}-2$. Normalizing the fixed point on the equator to $z=1$, the Thurston Algorithm for z^{2} is constant, while for $z^{2}-2$ it is a rescaling.

Lattès maps of type $(2,2,2,2)$ have been discussed in the previous sections. There is only one further type in the quadratic case: the branched cover $\mathbb{C} \rightarrow \widehat{\mathbb{C}}$ or $\mathbb{C} / \Lambda \rightarrow \widehat{\mathbb{C}}$ and the map L are symmetric with respect to a quarter rotation, and triangular domains correspond to half-spheres. The rational map f has three postcritical points, including a critical point that is the image of the other critical point, and the orbifold type is $(2,4,4)$. Maps of this type are Möbius conjugate to $f(z)=-1+2 / z^{2}$ with the ramification portrait $0 \Rightarrow \infty \Rightarrow-1 \rightarrow 1 \uparrow$. As for type ($2,2,2,2$), this map does not occur as a formal mating, but as an essential and geometric mating in cases where the formal mating has hyperbolic orbifold:

Theorem 6.1 (Matings and convergence for essential type (2, 4, 4))

1. The rational map $f(z)=-1+2 / z^{2}$ of type $(2,4,4)$ is a geometric mating with $f \cong 1 / 4 \amalg 1 / 2 \simeq 5 / 12 \amalg 1 / 6 \simeq 13 / 28 \amalg 3 / 14$. These are the only representations up to complex conjugation.
2. In each case, the rational maps from the Thurston Algorithm for the formal mating, or the slow mating algorithm, do converge.

Moreover, f is given by the geometric anti-mating $z^{2} \Pi\left(z^{2}+q\right)$ with $q^{3}=-2$, and the formal anti-mating converges $f_{n} \rightarrow f$ as well [antiJung]. Ray connections of $5 / 12 \sqcup 1 / 6$ are illustrated in Figure 3, and the canonical stratum of $1 / 4 \sqcup 1 / 2$ is shown in Figure 2 of [quadJung].

Figure 3: The formal mating $1 / 6 \sqcup 5 / 12$ is shown in the left cartoon by drawing the Hubbard trees in blue and red, the equator in green, and some critical and postcritical ray connections in black, which are subsets of ray-equivalence classes. The right sketch illustrates the essential mating, where some ray connections are collapsed. These structures are not invariant under pullback, but there would be more branches and more identifications. The self-identification of the green curve suggests that there is no simple pseudo-equator for this mating. (The sketch is inspired by Wilkerson [...].)

Identification of the matings of type $(2,4,4)$: We shall use similar arguments as in Section 4.3 and the same notation, labeling critical values of the formal mating $g=P \sqcup Q$ as p and \bar{q}. Once the essential mating \widetilde{g} is shown to have the same ramification portrait as f, they will be combinatorially equivalent in fact, since there are only three postcritical points and there is only one rational Möbius conjugacy class. Then the geometric and topological matings are obtained from the Rees-Shishikura Theorem [RS]. - So we must determine all P and Q, such that $P^{2}(p)$ and $\bar{Q}(\bar{q})$ belong to the same fixed ray-equivalence class:

1. If this class consists of the 0 -ray, we have $\bar{q}=\gamma_{M}(1 / 2)=-2=q$ and thus $p=\gamma_{M}(\pm 1 / 4) \in \mathcal{M}_{ \pm 1 / 3}$.
2. Suppose this class contains α_{p}. If $P^{2}(p)=\alpha_{p}, p$ must be real according to Lemma 4.1.1, since the preperiod is $k=2$. So $p=\gamma_{M}(5 / 12)=\gamma_{M}(7 / 12)$, and $\bar{q}=\gamma_{M}(\pm 1 / 6)$ has the property that $\bar{Q}(\bar{q})$ shares the angle $\pm 1 / 3$ with α_{p}. Now suppose that there was another example with a longer ray connection from $P^{2}(p)$ to α_{p}. This connection must have length two, since there is no primitive hyperbolic component of the same ray period in the limb of p. So there is a unique primitive component before \bar{q}, such that the cycle persisting behind it shares angles with both $P^{2}(p)$ and α_{p}. Since there are no other points of $\mathcal{K}_{\bar{q}}$ in the ray-equivalence class of α_{p}, this primitive cycle must contain $\bar{Q}(\bar{q})$ as well. But this contradicts Lemma 4.1.1 since the preperiod is $k=1$.
3. Suppose the fixed postcritical class contains $\alpha_{\bar{q}}$, then $\bar{Q}(\bar{q})$ is an endpoint connected to $\alpha_{\bar{q}}$ with length two: the points cannot coincide because the preperiod
is $k=1$, and there can be no primitive component of the required period before \bar{q}, which would give a longer ray connection. So $P^{2}(p)$ belongs to the primitive cycle sharing angles with $\bar{Q}(\bar{q})$ and $\alpha_{\bar{q}}$, and preperiod $k=2$ implies that p is real according to Lemma 4.1.1. Now the angle of $\bar{Q}(\bar{q})$ is complex conjugate to an angle of $\alpha_{\bar{q}}$ and belongs to α_{q} in the conjugate limb. By Lemma 4.1.2a, the ray period is 3. With $\bar{q}=\gamma_{M}(\pm 3 / 14) \in \mathcal{M}_{ \pm 1 / 3}$, the angle $\pm 3 / 7$ of $\bar{Q}(\bar{q})$ is connected to $\pm 4 / 7$ of $\alpha_{\bar{q}}$ at the cycle persisting from the Airplane; the parameter $p=\gamma_{M}(13 / 28)=\gamma_{M}(15 / 28)$ is the only one of preperiod 2 and period 3 behind the Airplane.

Convergence of slow mating for type $(2,4,4): \infty$ is postcritical and we may mark 0 as well without increasing the dimension. Convergence of the marked points and maps for the Thurston Algorithm of the unmodified formal mating g is obtained directly from Theorem ??, since the orbifold of the essential mating \widetilde{g} is not of type $(2,2,2,2)$. But let us look at possible more direct arguments. Three postcritical ray-equivalence classes will be pinched: the critical class of $p \sim \overline{0}$, the pre-fixed class of $P(p) \sim \bar{q}$, and the fixed class containing the full cycles of $P^{2}(p)$ and $\bar{Q}(\bar{q})$. Loops around these three trees form a simple obstruction for g. This obstruction is canonical by the Selinger characterization; see [char] or Theorem 2.12 in [quadJung]. So it is pinched according to the Canonical obstruction Theorem [Pilgrim, ext, quadJung], and marked points in the same ray-equivalence class will collide under the Thurston pullback σ_{g} of the formal mating. The issue of Theorem ??, and the underlying Theorem 3.11 in [quadJung], is that the colliding points do not wander.

When the marked points are normalized such that the critical point of Q is at ∞, the polynomial fixed point within the fixed class is at 1 , and its preimage at -1 , then convergence is obvious: all marked points collide with $\infty, 1$, or -1 as required. There is a subtle point, however, because this normalization may be different from the usual normalization, where the fixed point on the equator of g is at 1. Comparing the pullback for $5 / 12 \amalg 1 / 6$ or $3 / 28 \amalg 3 / 14$ in the two normalization means a variable rotation. So either we use the former normalization and get an additional marked point on the equator; then we must show it to converge to $1 \pm \mathrm{i}$ and conclude that the limit map is linear conjugate to the geometric mating in the usual normalization. Or take the usual normalization during the pullback and have three postcritical classes besides 1 . So to show that convergence is independent of the normalization, the Canonical obstruction Theorem alone may be not sufficient.

7 Related questions and results

References

[1] D. Ahmadi Dastjerdi, Dynamics of Certain Rational Maps of Degree Two, PhD thesis Liverpool 1991.
[2] J. Yang, Mating the Basilica with a Siegel disk, Conf. Geom. Dyn. 19, 258-297 (2015).

