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Abstract

In recent years, Thurston maps are discussed in terms of Dehn twists, Hur-
witz equivalence, moduli space maps, and algebraic descriptions. For general
quadratic Thurston maps, results of Koch [endo] are obtained here using quite
elementary techniques. An example of twisted Lattès maps illustrates ana-
lytic and algebraic techniques as well, and the virtual endomorphism of the
pure mapping class group is described.

1 Introduction
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2 Thurston maps

Concepts like twisted rational maps and Hurwitz equivalence, moduli space maps and
virtual endomorphisms, are discussed both for quadratic maps in general, and for Lattès
maps in particular.

2.1 Combinatorial equivalence

2.2 Dehn twists and the pure mapping class group

2.3 Virtual endomorphisms

For a Thurston map g with postcritical set P , |P | ≥ 4, consider the Teichmüller space
T , the projection π : T →M to moduli space, and the pullback map σg : T → T .
According to Section ??, the pure mapping class group G acts on T , and M is
isomorphic to T /G. Define the subgroup H < G of liftable homeomorphisms:
h ∈ H if there is an h′ ∈ G with g ◦ h′ = h ◦ g. Consider the virtual endomorphism
Φg : H → G, h 7→ h′, and the Hurwitz space W = T /H. Then π = π2 ◦ π1 with
covering maps π1 : T → W and π2 : W → M. Moreover, W is represented by
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triples of rational maps fτ and marked points in its domain and range, so there is
a σ̃g : W → M with σ̃g ◦ π1 = π ◦ σg [DH, book2H, endo, KPS]. (An alternative
notation is ω = π1 , Y = π2 , X = σ̃g .) Classical and recent applications of these
concepts include the following:

• τ, τ ′ ∈ T satisfy π(σg(τ)) = π(σg(τ
′)) and normalized fτ = fτ ′ , if and only if

τ ′ = h · τ with h ∈ H. Since H has finite index in G and π2 is finite, a family
fτ with π(τ) in a compact subset of M is compact. This fact is used in the
proof of the Thurston Theorem for hyperbolic orbifolds [DH, book2H, teich],
and in the Selinger proof of the Pilgrim Conjecture [ext, quadJung].

• Suppose g and g̃ have the same postcritical set P = P̃ (after conjugating one
with a homeomorphism). Then they are Hurwitz equivalent in the sense of
Definition 3.1, if and only if W = W̃ [endo].

• A moduli space map k : π(σg(T )) → M, as defined in Theorem 3.3, exists
when σ̃g is injective [endo]; under additional assumptions, k extends to a
critically finite endomorphism of P|P |−3.

• Various possible mapping characteristics of σg , like surjectivity or covering
behavior, are obtained explicitly from properties of σ̃g or k [BEKP, KPS].

• The Thurston Algorithm can be implemented by pulling back a path in moduli
space; see Section 2.3 in [quadJung]. When k exists, this is a pullback with k,
which may be understood in relation to the Julia set of k [BN].

• The Twisted Rabbit Problem was solved by Bartholdi–Nekrashevych [BN],
who showed that some extension of the virtual endomorphism ΦR is contract-
ing on G; i.e., there is a finite absorbing set. See also Section ?? and [Lodge].

• If Γ is a multicurve and h ∈ H a multitwist about Γ, then Φg : h 7→ h′ is
related to the Thurston matrix of Γ. So g is unobstructed, if Φg is contracting
on certain subgroups, i.e., the contraction coefficient is < 1 [Tw].

• For a postcritically finite rational map f , consider the iterated pullback of
essential simple closed curves γ. Then f may have the property that all curves
or multicurves become inessential or fall into a finite global attractor; this may
be obtained from algebraic contraction properties of the virtual endomorphism
Φf : H → G [Tw, KPS]. The attracting property has applications both to the
boundary behavior of the extended σf on augmented Teichmüller space T̂ [ext,
Lodge], and possibly to searching invariant multicurves.

2.4 Twisted rational maps

For a Thurston map g : Ĉ → Ĉ of degree d ≥ 2, the pure mapping class group G
consists of isotopy classes of homeomorphisms, which are fixing the postcritical set P
or the marked set Z pointwise. It is acting properly discontinuously on Teichmüller
space T by h · τ = [ψ ◦ ϕ−1] when h = [ϕ] ∈ G and τ = [ψ] ∈ T . Actually this is
a deck transformation for the cover π : T → M of moduli space, and M = T /G.
Since the relation between T and M is fundamental for the Thurston pullback,
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many properties of σg are related to G. Moreover, mapping classes can be used to
define and to relate different Thurston maps by pre- and postcomposition, which
provides the algebraic structure of a bisets and associated invariants [bookN]. A
classical problem is to apply a Dehn twist to the Rabbit polynomial fR(z) = z2 + cR
or to the Misiurewicz polynomial fi(z) = z2 + i and to determine its combinatorial
equivalence class [DH, algform]; it was solved by Bartholdi–Nekrashevych [BN].

A Dehn twist about a simple closed curve C, with at least two marked points in
each complementary component, is a homeomorphism or isotopy class of homeomor-
phisms, which are the identity except in a neighborhood of C. A curve crossing C is
mapped to a curve following C for a few rounds before continuing its way. This may
be visualized as follows when C is round: let a neighborhood of C consist of some
soft material and shear it by turning the inner disk around a few times, so that the
marked points resume their original position. Note that turning counterclockwise
gives a right twist, i.e., curves approaching C are deflected to the right. Dehn and
Lickorish have shown that G is generated by a finite number of Dehn twists; see the
references in [book1].

Example 2.1 (Twisting the Rabbit numerically)
There are three polynomials fc(z) = z2+c, such that the critical value c is 3-periodic:
the Rabbit, Corabbit, and the Airplane. In the dynamic plane of the Rabbit, let
C be the obvious curve separating z1 = c and z2 = c2 + c from z3 = 0, and denote
a simple right Dehn twist about C by ϕ. Now the problem is to determine the
combinatorial equivalence class of gm = ϕm ◦ fR for m ∈ Z; by the Lévy–Bernstein
Theorem [book2], gm is unobstructed, so it will be either cR , cC , or cA .

This problem is solved numerically by specifying an initial path in moduli space
and pulling it back; see also Example 4.5. We may either move z1 around z2 or vice
versa, making m rounds counterclockwise. To reduce the dimension, it is convenient
to rescale the plane such that z1 = 1 , so we must move z2 . Denoting z2 = u(t) we
have an explicit rotation around z1 = 1 for 0 ≤ t ≤ 1, and the pullback

u(t+ 1) =
1√

1− u(t)
(1)

for t+1 > 1, choosing the branch of the square-root such that the path is continuous.
Looking at integer times, this gives u(n) = π(σng (τ0)) with τ1 = [1]. The point will
stay at cR + 1 for a few iterations, then jump away and converge to cA + 1, cC + 1,
or back to cR + 1.

For small values of |m|, the combinatorial equivalence class may be determined
by finding curves homotopic to external rays explicitly, or by computing the it-
erated monodromy group of g. This gives ϕ1 ◦ fR ∼ fC and ϕ−1 ◦ fR ∼ fA in
particular. Bartholdi–Nekrashevych gave a solution for all m ∈ Z by using the vir-
tual endomorphism ΦR : H → G of the pure mapping class group; see Section 4.2
and Remark 4.6.3. They extended it to a contracting map ΦR : G → G such
that h ◦ fR ∼ ΦR(h) ◦ fR ; after finitely many applications of ΦR , every h ∈ G
becomes either ϕ1, ϕ−1, or 1. Moreover, they introduced the pullback of a path,
which was interpreted as a pullback of u(t) = k(u(t+1)) with the moduli space map
u = k(u′) = 1 − 1/u′2. The pure mapping class group G of fR is described by its
action on the iterated monodromy group of fR , and it is isomorphic to the iterated
monodromy group of k.

3



Remark 2.2 (Interactive implementation)
For interactive features related to the Thurston Algorithm, you may download and
compile both Mandel 5.12 and Mandel 5.14 from www.mndynamics.com .

5.12 The spider algorithm with legs, or alternatively with a path, is available for
quadratic polynomials. Dehn twists and recapture surgery can be specified by
dragging the critical value with the mouse.

5.14 Matings are available in the rational family 5.2, where ∞ is 2-periodic. Make
your own movies of slow mating with the key F9.
In cases with a one-dimensional moduli space map, specify it in family 5.0.
Draw a path with the mouse and pull it back, choosing the keys “a” or “b”
such that the path is appended. We have kR(u′) = 1−1/u′2, ki(u

′) = 1−2/u′2,
and k1/4(u

′) = (u′2 − 1)/(u′2 + 1); the latter map is obtained with “q”.
The pullback is useful to determine an iterated monodromy group as well.

Later versions shall combine and extend all of these commands, including more
general matings as well as captures.

3 Hurwitz equivalence and moduli space maps

As explained after Example 2.1, the family of twisted rabbits ϕm ◦ fR, m ∈ Z,
gives all 3-periodic polynomials R, C, A infinitely often. Consider the parameters
c and c̃ in the 1/3-sublimb of the period-2 component, which are defined by the
internal address 1–2–6–7–13–14 and 1–2–6–7–9–14, respectively [BS, LS]. If ϕ is a
suitable Dehn twist about the postcritical points z1 = c and z10 of fc , the family
ϕm ◦fc , m ∈ Z, is equivalent to two maps only, fc and fc̃ . This phenomenon will be
discussed in terms of recapture surgery and with algebraic methods in [polyJung];
see also www.mndynamics.com/papers/goettingen11.pdf .

These two examples motivate the following question: given two rational maps f
and f̃ with the same branch portrait (mapping scheme), is there a ϕ in the pure
mapping class group G of f , such that g = ϕ ◦ f is combinatorially equivalent to
f̃ ? It does not matter whether G acts from the left or right or both here, since all
three cases would be topologically conjugate. Note that f̃ = ψ0 ◦ (ϕ ◦ f) ◦ ψ−11 can
be understood as f̃ = (ψ0 ◦ ϕ) ◦ f ◦ ψ−11 as well, with ψ0 ◦ ϕ = ψ1 on P but the
two homeomorphisms not isotopic with respect to P . So the question is answered
affirmatively, if and only if f and f̃ are Hurwitz equivalent in the sense of the
following definition. According to Theorem 3.2, this is always the case for quadratic
maps. Related concepts have further applications to mapping properties of σf , e.g.;
see Section 4.2.

Definition 3.1 (Branch portrait and Hurwitz equivalence)
Suppose g is a Thurston map of degree d ≥ 2 with critical set Ω and marked set Z,

so that g(Ω ∪ Z) ⊂ Z. Let Ω̃ and Z̃ be corresponding sets for g̃.

1. The branch portrait of g is a directed graph describing the action of g : Ω∪Z →
Z, with multiple arrows from critical points to critical values. So the branch portraits
of g and g̃ are isomorphic, if there is a bijection ψ : Ω∪Z → Ω̃∪Z̃ with ψ◦g = g̃◦ψ
on Ω ∪ Z, preserving the local degree of critical points (multiplicity of arrows).
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2. Two Thurston maps g, g̃ : Ĉ→ Ĉ are (pure) Hurwitz equivalent, if there are
homeomorphisms ψ0 , ψ1 : Ĉ→ Ĉ with ψ0 ◦ g = g̃ ◦ ψ1 , such that ψ1 = ψ0 on Z.

Note that the branch portrait is not surjective, when there are preperiodic
marked points that are not postcritical. More precisely, we have defined a dynamic
portrait, but since we do not iterate here, it is used as a static portrait. This means
that the sets Z in the domain and range of g might as well be different. — Hurwitz
equivalence is a weaker notion than combinatorial equivalence, because ψ0 and ψ1

need not be isotopic. When (ψ0 . ψ1) gives a Hurwitz equivalence and ω ∈ Ω, then
ψ1(ω) is a critical point of g̃, but ψ0(ω) may be arbitrary, unless ω ∈ Z. When g
and g̃ are Hurwitz equivalent, then ψ1 | (Ω∪Z) defines an isomorphism ψ of branch
portraits. The converse is true in the quadratic case:

Theorem 3.2 (Hurwitz equivalence, following Koch)
Suppose that g, g̃ : Ĉ→ Ĉ are quadratic Thurston maps with critical sets Ω, Ω̃ and

marked sets Z, Z̃. If there is an isomorphism ψ : Ω∪Z → Ω̃∪ Z̃ of branch portraits,
then it extends to a Hurwitz equivalence ψ0 , ψ1 : Ĉ → Ĉ, ψ0 ◦ g = g̃ ◦ ψ1 , with
ψ0 = ψ on Z and ψ1 = ψ on Ω ∪ Z.

The branch portrait of g may be symmetric, i.e., there is an automorphism
interchanging the critical orbits. In this case, we have a Hurwitz equivalence from g
to g interchanging the critical points, or two different Hurwitz equivalences from g to
g̃. The theorem extends to bicritical maps of degree d ≥ 3, if the cyclic displacement
of certain points is the same for g and g̃. E.g., the unicritical polynomials cz4 + 1
with preperiod 1 and period 1 form three Hurwitz equivalence classes, which are
given by c = −2, c = −1 + i, and c = −1− i.

Theorem 3.2 was not stated formally in [endo]. Sarah Koch obtained it within
the proof of her results on moduli space maps, see below. For this reason, the case of
Ω∩P = ∅ was not included. On the other hand, she treats multicritical topological
polynomials with Ω ⊂ P as well.
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γ′, Z ′

γ, Z

Figure 1: In the proof of Theorem 3.2, the colors of z and −z are exchanged by deforming

the curve γ. This can be done by choosing an arc from an inner point of γ to g(z) = g(−z)
and modifying γ in a small neighborhood of this arc, so that other marked points are not

affected. The preimage γ′ = g−1(γ) is deformed such that z and −z exchange their colors.
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Proof of Theorem 3.2: Since g is a branched cover of degree 2, it has two
distinct critical points and two distinct critical values, which may coincide with
critical points. Denote the involution by a minus sign, such that g−1(g(z)) = {z, −z}
for all z ∈ Ĉ. Set Z ′ = Ω∪Z ∪−Z ⊂ g−1(Z) and analogously for g̃, then ψ extends
uniquely to a bijective semi-conjugation ψ : Z ′ → Z̃ ′. Choose a simple arc γ
connecting the critical values of g and avoiding Z \ g(Ω). Then γ′ = g−1(γ) is a
simple loop through the critical points, whose complement consists of a red disk and
a blue disk. Do an analogous construction for g̃. Our aim will be to construct ψ1

such that it maps the red disk of g to the red disk of g̃.
The problem is that when z ∈ Z ′ is red, ψ(z) may be blue. So we need to

modify our curves. Figure 1 illustrates the idea: in a finite number of steps, for each
z ∈ Z with incompatible colors, modify γ continuously so that it crosses g(z) once,
without crossing any other point in Z. Then γ′ = g−1(γ) is deformed such that z
and −z exchange their colors, while every other point in Z ′ \Ω keeps its color. After
finitely many deformations, we can define ψ0 and ψ1 . First let ψ0 : Ĉ → Ĉ be any
homeomorphism with ψ0 = ψ on Z and ψ0(γ) = γ̃. Then there are two possible
choices for a homeomorphism ψ1 : Ĉ→ Ĉ with ψ0 ◦ g = g̃ ◦ ψ1 ; choose it such that
red goes to red.

Now for z ∈ Z \ Ω we have ψ1(z) ∈ g̃−1(ψ0(g(z))) = {ψ(z), −ψ(z)}. Since the
curves and the homeomorphism have been constructed to respect the color, this
gives ψ1 = ψ on Z \Ω, and by construction on Ω as well. — For bicritical maps with
degree d ≥ 3, there are d colors with a cyclic order invariant under deformations.
If z1 , z2 ∈ Z with g(z1) = g(z2), then ψ(z1), ψ(z2) ∈ Z̃ must have the same cyclic
displacement; otherwise there is no choice of γ such that ψ(z1) has the same color
as z1 and ψ(z2) the same color as z2 . This condition is void if all points in Ω ∪ Z
are periodic.

The Hurwitz space W of g gives an intermediate cover T → W → M; see
Section 4.2 for its definition and various applications. The Thurston pullback
σg : T → T descends to a correspondence on moduli space, whose inverse often
is a function k in fact. This moduli space map may extend to a critically finite
endomorphism of P|P |−3. An explicit construction of k is discussed below. In Sec-
tion 5.2 of [endo], Koch constructs Hurwitz spaces W under various assumptions.
Hurwitz equivalence is verified from conjugation of Hurwitz spaces, and a moduli
space map k is obtained when the second projection σ̃g :W →M is injective.

Theorem 3.3 (Moduli space map, following Koch)
Suppose g is a quadratic Thurston map with |P | ≥ 3, without additional marked
points. When does a moduli space map exist, i.e., k : π(σg(T )) → M = π(T )
with k ◦ π ◦ σg = π ?

a) Assume at least one critical point of g is postcritical, i.e., periodic or in the orbit
of the other critical point. Then there is a moduli space map k : π(σg(T ))→M.

b) Assume that no critical point is postcritical, i.e., they are both preperiodic and
their orbits are either disjoint, or meet in non-critical points only. If the critical
points are not marked, there is no rational moduli space map k : π(σg(T ))→M.

c) Assume again that no critical point is postcritical. Mark the critical points in
addition and restrict the higher-dimensional spaces to “odd homeomorphisms” and
“even rational maps.” Then a rational moduli space map k exists in this setting,
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if and only if the two critical values of g are mapped to the same point. E.g., this
applies to quadratic Lattès maps of case a) or b).

Proof: Recall that the Thurston pullback σg on Teichmüller space T is defined
as follows: for τ = [ψ] there is a rational map fτ and another homeomorphism
ψ′ , such that ψ ◦ g = fτ ◦ ψ′ , and then σg(τ) = [ψ′]. We are interested in the
point configurations x = π(τ) with components in ψ(P ), x = (x1 , . . . , x|P |) =
(ψ(z1), . . . , ψ(z|P |)), and x′ = π(σg(τ)) with components x′i = ψ′(zi). If g(zi) =
zj , then fτ (x

′
i) = xj , and in general x′ is not determined by x alone: additional

information from the isotopy class of ψ is required to determine ψ′ and x′.
Now the question is to determine x from x′ ∈ π(σg(T )) without knowing τ .

Moduli space defines point configurations up to Möbius conjugation, and it is repre-
sented as a subset of Ĉ|P |−3 by fixing the positions of three postcritical points. We
shall assume that the critical values of f = fτ are 0 and ∞, and fτ (∞) = 1. The
latter condition is satisfied by a rescaling unless f(∞) ∈ {0, ∞} — in that case, 0
and ∞ must be interchanged by conjugating with z 7→ 1/z. With unknown critical
points u and v, this gives

f(z) = fτ (z) =
(z − u
z − v

)2
. (2)

a) If both critical points are postcritical, then u and v are just components of x′,
so x′ determines f and the components of x are explicit quadratic rational maps in
the components of x′. If only one postcritical point is critical, the branch portrait
contains a unique point with two preimages. So given x′, we know two components
α and β, such that f(α) = f(β). This gives the equation

α− u
α− v

= −β − u
β − v

or uv − α + β

2
(u+ v) + αβ , (3)

with suitable modification in the case of α =∞ or β =∞. Now since either u or v
is determined as a component of x′, the other one is computed from (3).

b) If both critical points are not postcritical, there are four distinct components
α, β, γ, δ of x′ with f(α) = f(β) and f(γ) = f(δ), so u and v must satisfy (3)
and the analogous equation with γ and δ. This system has two solutions, related by
interchanging the values of u and v. For each x′ the pullback relation on moduli space
is satisfied by two different functions f , and in general two different configurations
x. Morally, this means: replacing ψ with 1/ψ and fτ with 1/fτ would give the same
x′. With full information about ψ we know that 1/ψ does not map specific critical
values of g to 0 and ∞, but given x′ we cannot distinguish between x = (xi) and
(1/xi). These are not equal since ψ(P ) \ {0,∞} 6⊂ {1, −1} for any or all [ψ0] ∈ T .
— This interpretation does not seem to be a complete proof, however, because x and
the inverse could be given by distinct maps on moduli space, one of which would be
correct. So let us consider the explicit solution of the system given by (3) and the
other equation with γ and δ:

u, v =
(αβ − γδ)±

√
(α− γ)(α− δ)(β − γ)(β − δ)
α + β − γ − δ

, (4)

which reduces to, e.g., u, v = β ±
√

(β − γ)(β − δ) if α = ∞. Note that in any
case, at most three of the components α, β, γ, δ of x′ are fixed values 0, 1, ∞, and
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at least one is a free variable x′i . Thus the radicand does not consist of squares
only and u, v are not defined by single-valued functions of the x′i . Then choosing
a component x′i of x′ such that f(x′i) 6= 1, the component f(x′i) of x will not be a
rational function of x′. — With some effort, it should be possible to construct a
closed path in π(σg(T )) such that the radicand in (4) follows a closed path around
0; then there will be no algebraic moduli space map either.

c) Under the same assumptions on the Thurston map g, treat the critical points
as additional marked points, which increases the dimension of T and M by two.
Then the range of σf is contained in an invariant submanifold of codimension two,
such that ψ maps a specific critical point of g to 0 and the other one to∞, and such
that ψ(z̃) = −ψ(z) whenever g(z̃) = g(z) and z̃ 6= z. For the example of Lattès
maps, see Section ??.3. Note that this normalization affects both the domain and
range of f : for indices i 6= j with g(zi) = g(zj), we have not only x′i = −x′j but also
xi = −xj. We have parameters a, b and components α, β, γ, δ of x′ with distinct
squares, such that

f(z) =
z2 + a

z2 + b
, f(±α) = −f(±β) and f(±γ) = −f(±δ) . (5)

Solving this system of equations for a and b gives, analogously to (4),

a, b =
(α2β2 − γ2δ2)±

√
(α2 − γ2)(α2 − δ2)(β2 − γ2)(β2 − δ2)
α2 + β2 − γ2 − δ2

. (6)

Again at most three of the four x′i are fixed values, and the radicand is not a square

if none of these is ∞. If, e.g., α = ∞, we have a, b = β2 ±
√

(β2 − γ2)(β2 − δ2),
which is reduced to a, b = ±γδ only if β = 0. So we must have f(∞) = −f(0), or
equivalently, f 2(∞) = f 2(0). This means that g maps both critical values to the
same point as well. Finally, note that a, b = ±γδ gives two different single-valued
candidates for a moduli space map k; by analytic continuation, one of these gives
the correct (xi) everywhere and the other one would give (1/xi) everywhere.

4 Applications to Lattès maps

4.1 Lattès maps

Equivalence S−1AS = ±Ã with a conjugator S ∈ SL2(Z) can be checked algorithmi-
cally. It is related to a classical problem in number theory in fact, the classification
of integral quadratic forms. By work of Lagrange, Legendre, Gauß, and Zagier, e.g.,
there are effective reduction algorithms. — We shall use the normal forms

C+
t =

(
0 −2
1 t

)
, C−t =

(
0 2
−1 t

)
. (7)

C+
t is the companion matrix of trace t = a + d and the second matrix is chosen

such that A is conjugate to C−t , if −A is conjugate to C+
−t . So an idea to determine

equivalence classes for some modulus |t| of the trace would be to check whether every
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matrix is conjugate to C±t , and whether these two are conjugate. Both questions
lead to representations by quadratic forms: are there x, y ∈ Z with

cx2 + (d− a)xy − by2 = ±1 or − x2 + txy − 2y2 = 1 , (8)

respectively? In both equations, the discriminant is ∆ = t2 − 8. In simple cases,
we may either find an explicit solution or see a contradiction, avoiding the general
reduction theory.

Example 4.1 (Rational classes, jointly with Michael Mertens)
When |t| ≤ 2, then g is equivalent to a rational map. For each value of t, there are
two conjugacy classes of matrices, and there are two classes up to sign with |t| = 1
or |t| = 2, respectively. The case of t = 0 is special: C+

0 and C−0 are not conjugate,
but C−0 = −C+

0 , so there is only one combinatorial equivalence class. Now t = 2
can be treated with the unique factorization of Gaussian integers Z[i] as well: When
A has c > 0, there are k, m, n ∈ Z with k, m > 0 and km = n2 + 1, such that

A =

(
1− n −m
k 1 + n

)
. Ã =

(
1 −1
1 1

)
S =

(
α β
γ δ

)
(9)

The ansatz AS = SÃ to determine S gives two equations, which are equivalent to a
single complex equation k(α + iβ) = −(n+ i)(γ + iδ). Now the prime factorization
of km = (n+i)(n− i) gives u, v ∈ Z[i] with n+i = uv, k = |u|2, and m = |v|2. Then
S is obtained as α + iβ = v and γ + iδ = −u, which has determinant Im(uv) = 1.
— In a way, this argument can be reverted, so that the Thurston Theorem implies
that every divisor of n2 + 1 is a sum of two squares.

Example 4.2 (Non-rational classes, jointly with Michael Mertens)
When |t| ≥ 3, g is not equivalent to a rational map. For A of trace t = 3, we
use −bc = (a − 1)(a − 2) to show that A is diagonalized with S ∈ SL2(Z). For
4 ≤ t ≤ 11, the class number varies between one and two; these can be determined
online from ∆ = t2 − 8. See www.numbertheory.org/php/classnopos0.html . For
t = 12 there are four equivalence classes of quadratic forms, or conjugacy classes of
matrices, and four combinatorial equivalence classes:(

0 ∓2
±1 12

) (
2 ±6
±3 10

)
(10)

While these class numbers count primitve qudratic forms, so no prime number di-
vides all three coefficients, it may happen in our case that (d− a) shares a common
factor with b and c. This requires a prime p with p2|(t2 − 8), and p = 2 is ex-
cluded by determinant 2. The first example is obtained for t = 20 and p = 7: there
are only two classes of primitive quadratic forms with ∆ = 392, but at least four
combinatorial equivalence classes. Checking (8) for the second matrix in (11) gives
±7x2 + 14xy ∓ 7y2 = 1 or = −1, so it is not conjugate to a companion matrix.(

0 ∓2
±1 20

) (
3 ±7
±7 17

)
(11)

9
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4.2 Virtual endomorphisms and Lattès maps

While the pullback relation on curves has a finite global attractor, if f is a hyperbolic
quadratic polynomial or a suitable preperiodic polynomial, this cannot happen for
a Lattès map: f−1(P ) = Ω ∪ P shows that the preimages of an essential curve are
essential again. Moreover, these curves correspond to rational boundary points of
the upper halfplane, which are pulled back with the Möbius transformation σf .

Theorem 4.3 (Virtual endomorphism and pullback of curves)
Suppose f is a quadratic rational Lattès map of type (2, 2, 2, 2) without additional
marked points. Then the liftable homeomorphisms form a normal subgroup H < G
with index 2 and the virtual endomorphism Φf : H → G of the pure mapping class
group is injective, not surjective, and not contracting.

Φf is represented by a linear automorphism of Q2×2, whose eigenvalues are related
to the multiplier ρ of the Thurston pullback σf . For the cases a)–d) according to
Sections ?? and ?? we have:

a) and b): Φf : H → H is an isomorphism of finite order. Under Φf , every h ∈ H,
h 6= 1, has strict period 2 in case a), period 4 in case b). Under iterated pullback,
every essential simple closed curve is strictly 2-periodic or 4-periodic, respectively.

c) and d): Now H is not invariant under Φf , so the domain of Φn
f is shrinking.

Every essential simple closed curve has an infinite orbit under iterated pullback.

Pullback of curves: The preimage of an essential curve consists of one essential
curve or two homotopic essential curves. Lifting f to R2/Z2, it is represented by
~x 7→ A~x+~κ, and essential curves correspond to classes of parallel lines with rational
slope, described by vectors in Z2. These are pulled back with A, so a homotopy
class is n-periodic, if and only if it corresponds to an integer eigenvalue of An [ext].
Now in case a), A has complex eigenvalues and A2 = −2. In case b), A and A2 do
not have integer eigenvalues, but A4 = −4. In cases c) and d), the eigenvalue ηn

would be integer if ρ = 2/η2 satisfied ρn = 1, but ρ is not an algebraic integer since
ρ2 + 3

2
ρ+ 1 = 0.

Computing the virtual endomorphism: All matrices are understood up to
a change of sign. Isotopy classes of homeomorphisms in the pure mapping class
group G of f are covered by affine maps of the form ~x 7→ Q~x, such that Q ∈ SL2(Z)
has odd entries on the diagonal and even entries beside it [SY]; thus the postcritical
set Λ/2 is fixed pointwise modulo Λ = Z2. Let us denote the matrix group by the
same symbol G and recall that composition in G is written from right to left, which
corresponds to matrices acting on vectors from the left. Now the lift of mapping
classes according to f ◦ h′ = h ◦ f corresponds to AQ′ = QA.

In contrast to f , the matrix A has a unique inverse, so we may consider the map
Q 7→ Q′ = A−1QA, which is a linear map Q2×2 → Q2×2 and an inner automorphism
of GL2(Q). The subgroup H < G is represented by matrices Q ∈ G with Q′ ∈ G,
and Φf : Q 7→ A−1QA is the virtual endomorphism; it is injective by construction.
Note that for |P | > 4, every injective virtual endomorphism of G would be given by
a unique conjugation in G according to the Bell–Margalit Theorem 6.9 in [KPS]; in
our case with |P | = 4, there is a conjugation in GL2(Q) but not in G.

According to Sections ?? and ??, A has the eigenvalues η and η = 2/η. The
Thurston pullback σf has the derivative ρ = 2/η2 at its fixed point. Now we consider
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Q2×2 as a vector space Q4 and the map Q 7→ A−1QA is a linear map in GL4(Q).
Its “eigenmatrices” in C2×2 are dyadic products, such that the first factor is an
eigenvector of A−1 and the second factor is an eigenvector of A transposed. Thus
the eigenvalues of Φf ∈ GL4(Q) are the quotients η/η = 1, η/η = 1, η/η = ρ, and
η/η = ρ. The latter are both −1 in case a) and ±i in case b).

More explicitly: The pure mapping class group is a free group generated by
two right Dehn twists S and T , such that only T is supported on a curve separating
the critical values, so T is not liftable by f but T 2 and S are [BN]. Let us consider
the following concrete representations: the companion matrix A represents case a)
for t = 0, case b) for t = 2, and cases c) and d) for t = 1; the complex conjugate cases
with t = −2 and t = −1 would be related by orientation-reversing conjugations.

A =

(
0 −2
1 t

)
S =

(
1 0
−2 1

)
T =

(
1 2
0 1

)
U =

(
5 8
−2 −3

)
(12)

Now a short calculation gives the following expression for the virtual endomorphism
Φf . Both Q and Q′ must have odd entries on the diagonal and even entries beside
it. Observing 4|(δ − α), the formula (13) shows that in each of the three cases, the
same matrix subgroup H < G is obtained: Q ∈ G belongs to H, if and only if 4|β.
So T is not in H but S, T 2, and U = T−1ST are.

Φf : Q =

(
α β
γ δ

)
7→ Q′ =

 δ + t
2
β t2

2
β + t(δ − α)− 2γ

−1
2
β α− t

2
β

 (13)

The relation T nSmT k = T n+1UmT k−1 shows that every Q ∈ G can be written as w
or wT , where w is a word in S, T 2, U and their inverses. So H < G is generated by
S, T 2, U ; it is a normal subgroup of index 2. Writing Q ∈ G as a word in S±1, T±1,
it belongs to H if and only if the total number of T±1 is even. Now Φf acts on the
generators of H as follows:

a) t = 2, Φf : S 7→ T 2 T 2 7→ U U 7→ T−1S−1T−1S−1

b) t = 0, Φf : S 7→ T 2 T 2 7→ S U 7→ S−1T−1S−1T−1 (14)

c)d) t = 1, Φf : S 7→ T 2 T 2 7→ T−1S−1 U 7→ S2

Questions of surjectivity, periodicity, and contraction in cases a)b): The
images of the generators (14) show that in these two cases, Φf maps H into H.
So all iterates Φn

f are defined on all of H and given by restrictions of the corre-
sponding iterate acting on GL2(Q) or Q2×2. The same relations, or alternatively
the eigenvalues, give Φ2

f = 1 in case a) and Φ4
f = 1 in case b). So Φf : H → H is an

isomorphism, not surjective onto G, and not contracting. It remains to show that
no h 6= 1 has a lower period. Recalling that we consider matrices up to sign, we are
looking for matrices Q ∈ H with Q′ = ±Q in case a), Q′′ = ±Q in case b). Each
equation gives two relations between the four matrix entries, there are only finitely
many solutions in SL2(Z), and the only solution in H is the matrix ±1.

Questions of surjectivity, periodicity, and contraction in cases c)d):
Denoting the range of Φf by H ′, the same arguments as above show that H ′ < G
is a normal subgroup of index 2, generated by S2, T 2, V = T−1S−1, and that a
word in S±1, T±1 belongs to H ′, if and only if the total numbers of S±1 and T±1
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have the same parity. So Φf is an isomorphism H → H ′ and not surjective onto
G. Since H ′ 6= H, the domain of Φn

f will be shrinking with n. Nevertheless there
are infinitely many orbits of arbitrary length: for every h ∈ G, h2

n
is in the domain

of Φ±nf . According to the eigenvalues of Φf on Q2×2, any n-periodic Q ∈ H must
satisfy Q′ = Q, which gives Q = ±1 as a matrix in SL2(Z) and Q = 1 ∈ H. I do
not know if there are other elements with orbit in H defined forever.

The eigenvalues show that Φ−1f is conjugate to Φf in GL4(Q). A particular
conjugation is obtained from the fact that 2A−1 is conjugate to A in GL2(Q). It
turns out that this inner automorphism of GL2(Q) restricts to an automorphism χ
of G. The automorphism χ : G→ G defined by S 7→ ST , T 7→ T−1 is an involution.
It conjugates the virtual endomorphism Φf : H → G to the virtual endomorphism
Φ−1f : H ′ → G. So if Φf was contracting, Φ−1f would be contracting as well, a
contradiction.

When g is a quadratic Thurston map and x∗ is not postcritical, the fundamental
group π(Ĉ \ P, x∗) acts on the abstract tree of iterated preimages of x∗ by mo-
nodromy; this action defines the iterated monodromy group. Choosing arcs from
x∗ to its preimages x0 and x1 , it is represented by a contracting wreath recursion
and an automaton with finite nucleus [bookN, BN]. Algebraic characterizations of
combinatorial equivalence are given in [Kameyama, bookN, algform, BN]. Iterated
monodromy groups for quadratic rational Lattès maps f of cases a) and c) are dis-
cussed in [pfold, bookN], respectively. They are represented by complex affine maps
z 7→ ±z + λ, λ ∈ Λ, and the virtual endomorphisms divides λ by η

The pure mapping class group G can be described by its action on the funda-
mental group of Ĉ \ P . Moreover, for |P | = 4, G is identified with the fundamental
group of a thrice-punctured sphere [Lodge, KPS, LK]. If a moduli space map k ex-
ists, the virtual endomorphism of the iterated monodromy group of k corresponds to
the virtual endomorphism of the pure mapping class group G of g. However, there
does not seem to be a direct relation between this virtual endomorphism, and the
iterated monodromy group of g itself.

4.3 Twisted Lattès maps of type (2, 2, 2, 2)

Analogously to the polynomial case discussed in Section ??, we may ask to determine
the combinatorial equivalence class of a twisted Lattès map g = ϕ ◦ f :

Proposition 4.4 (Twisted Lattès maps)
Suppose f is a quadratic rational Lattès maps of type (2, 2, 2, 2) with postcritical

set P , C is an essential curve in Ĉ \ P , and the homeomorphism ϕ represents a
Dehn twist about C. Consider the family of Thurston maps gm = ϕm ◦ f for m ∈ Z.
Then:

• Each combinatorial equivalence class contains at most two maps from the family
gm .

• The family gm provides finitely many maps equivalent to rational functions and
infinitely many non-rational classes. Of the latter, at most one is obstructed.

Proof: By lifting the maps to the torus R2/Z2, f is represented by ~x 7→ A~x+~κ
and ϕ by ~x 7→ T~x. Then gm = ϕm ◦f corresponds to ~x 7→ TmA~x+~κ, since T fixes ~κ
modulo Z2. By a transformation from SL2(Z), we may assume that T has the form
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of (16), maybe replacing 2 with any even number. The trace tm of TmA is an affine
function of m. If tm was constant, A would have an off-diagonal entry 0, its trace
be ±3 due to determinant 2, and f could not be rational. So for every t ≥ 0, there
are at most two m with |tm| = t. Now according to Sections ?? and ??, equivalent
maps have the same absolute value of the trace |tm|, rational maps are characterized
by |tm| ≤ 2, and the unique obstructed class of type c) or d) has |tm| = 3.

Example 4.5 (Twisted Lattès map)
Consider the Lattès map f(z) = fi(z) = z2+i

1+iz2
of case b), whose critical values ±i

are mapped to the common value −1 and then to the fixed point 1. Let ϕ : Ĉ→ Ĉ
be a simple right Dehn twist about the obvious curve C separating i and −1 from
−i and 1. and define the Thurston maps gm = ϕm ◦ f , m ∈ Z.

Then for m > 2 and m < 0, gm is not equivalent to a rational map and not
obstructed. The conjugate map f−i of case b) is obtained for m = 2, while m = 1
gives the rational map of case a).

These statements are an easy application of matrices according to the proof
of Proposition 4.4, but we shall discuss numerical and combinatorial arguments in
addition, to illustrate the implementation and geometric properties of the Thurston
pullback.

Proof with linear algebra: Choose the torus such that a straight quarter
covers a disk with boundary isotopic to the unit circle and w = 0 corresponds to
z = 1. Then f and ϕ are represented by matrices Ã and T̃ as follows. Note that
Ã and T̃ = T̃ 1 can be obtained by applying f or ϕ to a closed curve according to
Remark ??, lifting curves to R2, and finding homotopic vectors.

T̃m =

(
1 0
−2m 1

)
Ã =

(
1 1
−1 1

)
T̃mÃ =

(
1 1

−2m− 1 1− 2m

)
(15)

For possible comparisons with Theorem 4.3, in particular (12) and (14), let us
consider the alternative representations T = S−1T̃ S and A = S−1ÃS as well, with

T =

(
1 2
0 1

)
A =

(
0 2
−1 2

)
S =

(
0 −1
1 −1

)
. (16)

Either representation gives that the trace is tm = 2−2m, which is even for all m ∈ Z.
According to Proposition ??.2, this corresponds to the fact that the branch portrait
of gm is of case a)b). Now t1 = 0 shows that g1 is combinatorially equivalent to the
rational map of case a). We have |tm| = 2 for m = 0 and m = 2, so g2 is equivalent
to fi or f−i of case b). Computing η from T 2A according to (??) and (??) gives
η2 = +2i, so f−i by the computation in Section ??.

Note that according to Theorem 3.2, all Thurston maps with branch portrait a)b)
are obtained by composing fi with a suitable mapping class, but not all are available
from ϕm: We have |tm| = 12 for m ∈ {−5, 7}, and |tm| = 20 for m ∈ {−9, 11},
but there are at least four different combinatorial equivalence classes in each case
according to Example 4.2. And recall that the branch portrait is symmetric but the
rational map of case a) is not. So this map is equivalent to ϕ′ ◦ fi and to ϕ′′ ◦ fi ,
such that the combinatorial equivalence ψ1 maps 0 7→ 0 or 0 7→ ∞, respectively.
Only one of the two possibilities is realized by g1 = ϕ1 ◦ fi . I do not know how to
see from the matrices, which one it is.
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Non-convergent numerical approach: As in Example 2.1, we are moving the
critical value from z = i m times counterclockwise around z = −1 to define an initial
path in moduli space; this corresponds to a continuous deformation from ϕ−m to
the identity in Teichmüller space. Two arguments show that pulling back this path
gives a correct implementation of the Thurston Algorithm: first, g = ϕm ◦ fi gives
σg([ϕ

−m]) = [1], so we may choose ψ0 = ϕ−m and ψ1 = 1, analogously to the case of
captures and encaptures in Section 6 of [quadJung]. Second, according to Section 2.3
in [quadJung], projecting a path ψt connecting ψ0 to ψ1 from Teichmüller space to
moduli space encodes σg . Note that these arguments do not require a moduli space
map k.

Using the normalization (??) with critical points at 0 and ∞, u(t) = ft(0) and
−u(t) = ft(∞), the continuous pullback is given by

u(t+ 1) = ±1 + u(t)

1− u(t)
, t+ 1 ≥ 2 (17)

according to (??) in Section ??. Note that this formula would not be correct for
1 < t+ 1 < 2, since in the initial path segment we have an explicit move of ft(0) =
u(t), but ft(∞) = −i 6= −u(t). This gives the alternative pullback relation

u(t+ 1) =

√√√√i
1 + u(t)

1− u(t)
, 1 < t+ 1 < 2 . (18)

The radicand winds m times around 0, so the path u(t) winds m/2 times around 0
for 1 ≤ t ≤ 2. In the notation from Figure 2 middle, it follows βγ−1 for m/2 rounds;
for even m it is a closed path from i to itself, and for odd m it ends at −i. Now this
path segment is pulled back indefinitely with (17), but it will not converge when g
is equivalent to a rational map, because then σg has a neutral fixed point.

Figure 2: Twisting the Lattès map f(z) = fi(z) = z2+i
1+iz2

of case b). Left: shifting the

critical value z = i m times counterclockwise around z = −1 gives the m-th power of a

right Dehn twist about these two points. Middle: according to Example 4.5, the curves

α, β, γ, δ describe the pullback of the path, when the critical points are marked and the

rational maps are even. Right: the curves λ and ρ in the usual moduli space.

Geometric-combinatorial explanation of Example 4.5: Although the numer-
ical implementation will not converge, we can interpret the path using two ideas:
first, the pullback with (17) will be periodic, so the full path is known. Second,
g will be equivalent to a rational map, if and only if the path is contractible in
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moduli space. The latter statement is related to the fact that σg is of finite or-
der in the rational case a)b): if σg is of finite order, the path in T will be closed,
and since T is contractible, it projects to a contractible path in M. Conversely, if
the periodic path in M is contractible, it lifts to a closed path in T , so it cannot
diverge to the boundary of T , as it must when σg has no fixed point. Since we
have introduced 0 and ∞ as additional marked points, and u(t) and −u(t) move
simultaneously, we should check whether u(t) is contractible in Ĉ \ {−1, 1, 0, ∞};
this claim can be proved by showing that the one-dimensional invariant manifold of
the three-dimensional Teichmüller space according to Theorem 3.3.3 is contractible.
Alternatively, we consider the path in ordinary moduli space: The cross ratio of
the four postcritical points defines a new coordinate w = (u2 + 1)/(2u), and the
projected closed path through w = 0 shall be contractible in Ĉ \ {−1, 1, ∞}. The
new path will be described in terms of the loops λ and ρ from Figure 2 right. Both
α and β−1 are mapped to λ, while γ and δ−1 correspond to ρ. Path segments are
appended from left to right.

When m is even, u(t) is a closed path from i through −i back to i for 1 ≤ t ≤ 2.
Since u(2) = u(1) = i, the sign + must be used in (17) to compute u(2 + 0) from
u(1 + 0), and by analytic continuation it will be + forever. Now path segments are
pulled back as α 7→ β 7→ γ 7→ δ 7→ α. The path has period 4 and for 1 ≤ t ≤ 5, u(t)
and w(t) follow

(βγ−1)k · (γδ−1)k · (δα−1)k · (αβ−1)k , (λ−1ρ−1)k · (ρρ)k · (ρ−1λ−1)k · (λλ)k (19)

when m = 2k > 0, while for m = −2k < 0 we have

(γβ−1)k · (δγ−1)k · (αδ−1)k · (βα−1)k , (ρλ)k · (ρ−1ρ−1)k · (λρ)k · (λ−1λ−1)k . (20)

Since the fundamental group π(Ĉ \ {−1, 1, ∞}, 0) is free on the generators λ and
ρ, we see that the path is contractible only when m = 2. Then a path segment of
length 2 is not contractible, so g2 defines a Thurston pullback map of finite order 4,
and g2 is equivalent to a rational map of case a), fi or f−i .

When m is odd, u(1) = i and u(2) = −i shows that the sign − must be used in
(17). Path segments are pulled back according to α↔ γ−1, β ↔ β−1, and δ ↔ δ−1.
The path has period 2 and for 1 ≤ t ≤ 3, u(t) and w(t) are described as

(βγ−1)kβ · (β−1α)kβ−1 , (λ−1ρ−1)kλ−1 · (λλ)kλ (21)

when m = 2k + 1 > 0, while for m = −(2k + 1) < 0 we have

(γβ−1)kγ · (α−1β)kα−1 , (ρλ)kρ · (λ−1λ−1)kλ−1 . (22)

Now the path is contractible only for m = 1, g1 gives a Thurston pullback map of
finite order 2, and g1 is equivalent to the rational map of case b). — This approach
shows that gm = ϕm ◦ fi is not equivalent to a rational map when m < 0 or m > 2,
but I have not tried to determine equivalence classes from the path. Note that two
different moduli spaces were used: u(t) is obtained easily from the simple pullback
relation (17), while w(t) is easier to check for contractibility.

Although the previous arguments are rather unique to Thurston maps of case
(2, 2, 2, 2) a)b), they provide an explicit example of a pullback in moduli space,
which is neither convergent nor divergent to the boundary. When f is case c) or
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d) of type (2, 2, 2, 2), the combinatorial equivalence class is obtained analogously
from matrices, e.g., with tm = 1 − 2m. The pullback of curves will no longer be
periodic: for tm = −1 it performs an irrational rotation in a bounded subset of M.
For |tm| = 3 it diverges to the boundary of M, while for |tm| > 3, it is bounded
in M but lifts to an unbounded path in T . I have not tried to obtain the path
combinatorially, but in principle the lift from M = Ĉ \ {0, 1, ∞} to the upper
halfplane T can be obtained as follows: draw a triangle between the punctures of
M and mark the corresponding fundamental domains of the modular function in
the upper halfplane. Then lift the path by recording it crossing the triangle edges.
For |tm| = 3 the path in M will converge to a puncture and the lifted path will
converge to a rational boundary point. For |tm| > 3 the path in T shall converge to
an irrational boundary point.

Remark 4.6 (Behavior of the pullback)
1. In Example 4.5 we have used the “even” covering space according to Remark ??.3
to obtain the curves more easily. Independently of this, for g with the branch por-
trait a)b), σg is of finite order, if and only if g is equivalent to a rational map. For
ϕm ◦ fi with m even, the pullback of ψ1 = 1 is such that π([ψn]) is constant; ad-
ditional information is required to see whether the map is equivalent to f−i or not
rational.

2. When twisting the Rabbit polynomial ϕm ◦ fR , π([ψn]) will be constant for a
finite number of steps and then converge. For the particular Dehn twist ϕ according
to Example 2.1, it does not seem to be constant forever; even if gm is equivalent to
fR, the path jumps away and converges back. For twists about different curves, it
does happen that a segment is pulled back to a trivial path, and then it stays trivial.

3. These observations have a partial explanation in terms of the virtual endomor-
phism Φf of the pure mapping class group G: for h ∈ H < G we have h ◦ f = f ◦ h′
and Φf (h) = h′. Now the Thurston pullback for ϕm ◦ f with ψ0 = ϕ−m and ψ1 = 1
is obtained recursively as ψn+1 = Φf (ψn ◦ϕm), as long as this is defined. There may
be a minimal n with ψn ◦ϕm /∈ H; then we still have fn = f in our normalization of
critical points, but π([ψn+1]) 6= π([ψn]) = π([1]). Now ψn+1 is no longer described in
terms of G. The interpretation of finite and infinite orbits in G depends on whether
we are in case a)b), case c)d), or not of type (2, 2, 2, 2). In Example 4.5 we have
the following virtual endomorphism, described in terms of the same matrices S and
T as in (12), but acting differently from (14) since here −A = A−2 :

Φf : S 7→ T 2 7→ TST−1 7→ S−1T−1S−1T−1 7→ S (23)

For m = 2 now ψn+1 = Φf (ψn ◦ T 2) gives

ψ0 = T−2 ψ1 = 1 ψ2 = TST−1 ψ3 = S−1T−2 ψ4 = T−2 = ψ0 , (24)

so g = ϕ2 ◦ fi satisfies σ4
g([ψ0]) = [ψ0] and is equivalent to a rational map of case b).
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