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Abstract

The high-energy-limit of the scattering operator for multidimensional
relativistic dynamics, including a Dirac particle in an electromagnetic field,
is investigated by using time-dependent, geometrical methods. This yields
a reconstruction formula, by which the field can be obtained uniquely from
scattering data.

I Introduction

For self-adjoint operators H0 and H = H0 + V with H0 having continuous spec-

trum, the wave operators are defined by Ω± = s − limt→±∞ eiHte−iH0t. If they

exist on H and their ranges equal Hac(H), the scattering system is called com-

plete and the scattering operator S = Ω∗
+Ω− is unitary [11]. The inverse problem

is to determine V , given S (and H0). In [4, 5, 6, 7] Enss and Weder show that for

the Schrödinger operator H0 = −1/2 ∆ and a translation in momentum space by

v = vω, ω ∈ Sν−1 the high-energy-limit of the scattering operator is given by(
Φ, iv

(
e−ivxSeivx − 1

)
Ψ
)
−→

∫ +∞

−∞
dτ
(
Φ, V (x + ωτ)Ψ

)
as v →∞ (1)

for suitable Φ, Ψ. The short-range potential V , a multiplication operator, can

be uniquely reconstructed from this X-ray transform. This approach generalizes

to multiparticle systems and long-range potentials.
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Following these ideas, we use time-dependent, geometrical methods to study

relativistic quantum mechanics, in particular the Dirac equation with the free

Hamiltonian H0 = α·p + βm. The main result is Theorem 3.2:

s− lim
v→∞

e−ivxNWS±e
ivxNW = exp{−i

+∞∫
−∞

(A0 ∓ ω ·A)(xNW + ωt)dt} (2)

from which the electromagnetic field (A0,A) may be reconstructed. Here S± de-

scribe the scattering of positive/negative energy states in the Foldy-Wouthuysen-

representation, and xNW is the Newton-Wigner position operator. The Ai are sup-

posed to be continuous and to decay integrably, i.e.
∫∞
0 dR sup|x|≥R |Ai(x)| <∞.

In [8] Ito has given a similar reconstruction formula for the high-energy-limit

of the scattering amplitude using stationary methods, for Ai ∈ C2 satisfying

|Ai(x)| < c|x|−3−ε.

The charge e is incorporated in Ai, furthermore, we let c = h̄ = 1. Note that

−
∫+∞
−∞ (A0∓ω·A)(x+ωt)dt is the classical action of a particle moving along a line

with velocity ω, as expected in the semi-classical limit. Introducing suitable units

and letting c → ∞ in the r.h.s. of (2) yields exp{i
∫+∞
−∞ ω ·A(x + ωt)dt}, which

has been obtained by Arians [1] as the high-energy-limit of S for a Schrödinger

particle in an electromagnetic field.

For mathematical quantum mechanics we refer to [9, 10, 11] and for the Dirac

equation to [13]. In Section 2 we study H0 =
√

p2 +m2, which is similar to the

Dirac operator, while being easier to handle. In Section 3 we examine the recon-

struction formula for the Dirac equation, which is proved in Section 4. Various

generalizations are discussed in Section 5.

II Reconstruction Formula for the Scalar Rela-

tivistic Hamiltonian

We consider H = L2(Rν) and H0 =
√

p2 +m2 with m ≥ 0 and p = −i∇.

This scalar Hamiltonian H0 is self-adjoint on the Sobolev-space H1(Rν) as its do-

main. It may be considered as a model for relativistic quantum mechanics, since

the symbols of the Klein-Gordon- and the Dirac equation have the eigenvalues

±
√

p2 +m2.

Definition 2.1 (Short-range Potentials) A symmetric multiplication opera-

tor V is called a short-range potential, if it is H0-bounded with relative bound < 1

and satisfies ∥∥∥V√p2 + 1
−1

F (|x| > R)
∥∥∥ ∈ L1 ([0,∞), dR) . (3)
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F (. . .) denotes multiplication with the characteristic function of the indicated re-

gion in x -space.

This definition corresponds to that of the Schrödinger case [4, 5, 6, 7]. Lo-

cal singularities of V are possible: If, e.g., ν > 1, p > ν and V ∈ Lp + L∞

with ‖V χ(|x| > R)‖Lp+L∞ ∈ L1 ([0,∞), dR), then V is short-range. (The norm

is defined by ‖f‖Lp+L∞ := inf{ ‖f1‖p + ‖f2‖∞| f = f1 + f2}.) For ν = 3,

a Yukawa-potential is also admitted, if the coupling constant is small. For a

short-range potential V and H = H0 + V the completeness of the scattering

system follows from Theorem 2.1 in [12].

For Ψ ∈ H, the x-representation is given by ψ(x) and the Fourier trans-

form ψ̂(p) yields the momentum representation of Ψ. The position operator x

generates translations in momentum space, in particular for any v = vω ∈ Rν

e−ivxH eivx = e−ivx
(√

p2 +m2 + V (x)
)
eivx =

√
(p + v)2 +m2 + V (x) .

Lemma 2.2 (Integrable Bound) Let V be a short-range potential. For Ψ with

ψ̂ ∈ C∞
0 there are v0 > 0, h ∈ L1(R) such that

‖V e−iH0teivxΨ‖ ≤ h(t) for t ∈ R, uniformly in v ≥ v0. (4)

This v-independent integrable bound will be crucial to apply the dominated con-

vergence theorem in the proof of Theorem 2.3 .

Proof: We first show that there are c, v0 > 0 such that∣∣∣∣e−iH0teivx
√

p2 + 1 Ψ
∣∣∣∣ (x) <

c

(1 + |t|) ν+3
2

for |x| < |t|
2
, v > v0. (5)

This follows by a non-stationary phase estimate [13, p.33], [11, p.37] from(
e−ivxe−iH0teivx

√
p2 + 1 Ψ

)
(x) = (2π)−

ν
2

∫
dp eitf(p;x,t,v)

√
p2 + 1 ψ̂(p) (6)

with f =
(
p· x

t
−
√

(p + v)2 +m2
)

, since there is a v0 > 0 such that |∇pf | > 1/4

for |x/t| < 1/2, v > v0, p ∈ supp(ψ̂). Also ∂β
pf is bounded there for |β| > 0, and

∂γ
p

(√
p2 + 1ψ̂(p)

)
is bounded for |γ| ≥ 0. Now we consider∥∥∥e−ivxV e−iH0teivx Ψ

∥∥∥
=

∥∥∥∥∥V
√

p2 + 1
−1
{
F
(
|x| > |t|

2

)
+ F

(
|x| < |t|

2

)}
e−it

√
(p+v)2+m2

√
p2 + 1 Ψ

∥∥∥∥∥
≤

∥∥∥∥∥V
√

p2 + 1
−1

F
(
|x| > |t|

2

)∥∥∥∥∥ ·
∥∥∥∥√p2 + 1 Ψ

∥∥∥∥
+

∥∥∥∥V√p2 + 1
−1
∥∥∥∥ ·
∥∥∥∥∥F(|x| < |t|

2

)
e−iH0teivx

√
p2 + 1Ψ

∥∥∥∥∥
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The first term is in L1 by (3) and the second is bounded by c̃/(1 + |t|) 3
2 by (5).

This decomposition is motivated by the geometrical idea that the wave-packet

is concentrated around ωt , where the potential is small, and that it is small

around the origin, where the potential may be large.

Theorem 2.3 (High-Energy-Asymptotics of S) For a short-range potential

V the high-energy limit of the scattering operator is given by

s− lim
v→∞

e−ivxSeivx = exp{−i
+∞∫
−∞

V (x + ωt)dt}, (7)

the integral being convergent for a.e. x ∈ Rν.

Proof: It is sufficient to consider the dense set of Ψ with ψ̂ ∈ C∞
0 .

e−ivxΩ+e
ivx Ψ = Ψ +

∫ ∞

0
dt

d

dt
e−ivxeiHte−iH0teivx Ψ

= Ψ + i
∫ ∞

0
dt e

i

(√
(p+v)2+m2 + V (x)

)
t
V (x)e−i

√
(p+v)2+m2 tΨ

= Ψ + i
∫ ∞

0
dt e

i

(√
(p+v)2+m2−v + V (x)

)
t
V (x)e

−i

(√
(p+v)2+m2−v

)
t
Ψ.

With v = vω we find (
√

(p + v)2 +m2 − v + V )
v→∞−→ ω ·p + V in the strong

resolvent sense and the exponential converges strongly [9, Theorems VIII.25,21].

V
√

p2 + 1
−1

is bounded and

e
−i

(√
(p+v)2+m2−v

)
t
√

p2 + 1 Ψ
v→∞−→ e−iω·pt

√
p2 + 1 Ψ.

The integrand is bounded by h(t) independent of v > v0 by Lemma 2.2 . Using

the dominated convergence theorem (for the Bochner-integral [3]) we conclude

that

lim
v→∞

e−ivxΩ+e
ivxΨ = Ψ + i

∫ ∞

0
dt ei(ω·p+V (x))tV (x)e−iω·ptΨ

= lim
s→∞

ei(ω·p+V (x))se−iω·psΨ. (8)

In the special case of continuous V with integrable decay , (8) is shown to equal

exp{i
∫∞
0 dt V (x + ωt)}Ψ by considering the family of unitary operators U(s) =

eiω·pse−i(ω·p+V (x))s, which satisfies the differential equation

iU̇(s) = eiω·psV (x) e−i(ω·p+V (x))s = V (x + ωs)U(s)

and U(0) = 1, as does exp{−i
∫ s
0 dt V (x+ωt)}. For general V we use the decom-

position V = V+ − V−, V± ≥ 0 and choose Vn,± ∈ C0
0 with Vn,± ↗ V± a.e.. Let
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Vn := Vn,+ − Vn,−. The estimate of the integral by an integrable function h from

Lemma 2.2 also holds for V±, Vn,±, Vn, uniformly in n. Again, by applying the

dominated convergence theorem once more, we deduce

lim
v→∞

e−ivxΩ+e
ivxΨ = Ψ + i lim

n→∞

∫ ∞

0
dt ei(ω·p+Vn)tVne

−iω·ptΨ

= lim
n→∞

exp{i
∫ ∞

0
dt Vn(x + ωt)}Ψ.

Also we see that for a subsequence limn→∞ exp{i
∫∞
0 dt V ′

n,±(x + ωt)} exists for

a.e. x ∈ Rν , therefore
∫∞
0 dt V±(x + ωt) exists for a.e. x since for a.e. x the

monotone convergence V ′
n,±(x + ωt) ↗ V±(x + ωt) holds for a.e. t ∈ R. We

consider Ω− similarly and find

s− lim
v→∞

e−ivxΩ±e
ivx = exp{i

∫ ±∞

0
dt V (x + ωt)}. (9)

Using S = Ω∗
+Ω− we get the desired reconstruction formula

w − lim
v→∞

e−ivxSeivx = exp{−i
∫ +∞

−∞
V (x + ωt)dt}. (10)

The unitarity of e−ivxSeivx and of its weak limit imply the strong convergence.

The proof suggests the following physical interpretation: If the velocity of a

particle approaches 1 (i.e. the speed of light), the spreading of the wave-packet

is negligible and the free kinematics reduce to a pure translation.

Theorem 2.4 (Injectivity of the Scattering Map) Consider ν > 1 and

V := {V ∈ C0(Rν ,R)| ‖V χ(|x| > R)‖∞ ∈ L1 ([0,∞), dR)}. Then the scattering

map:

V → L(H)

V 7→ S = S(H0, H0 + V )

is injective, i.e. S determines V uniquely.

The case ν = 1 cannot be treated with our methods. The case of more general V

shall be a topic of further research, the difficulties arising from the non-injectivity

of the exponential function.

Proof: Theorem 2.3 yields exp{−i
∫+∞
−∞ V (x + ωt)dt} as a continuous function

of x, thus giving
∫+∞
−∞ V (x + ωt)dt up to a fixed multiple of 2π. This X-ray

transform is obtained uniquely, since it must vanish as |x| → ∞ orthogonal to ω.

If
∫+∞
−∞dt V (x + ωt) = 0, then considering ωt as polar coordinates for Rν yields

0 =
∫

Sν−1
dω

∫ +∞

−∞
dt V (x + ωt) = 2

∫
dy
V (x + y)

|y|ν−1
. (11)
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To show that V is determined uniquely, we examine the case ν = 2 first. Here

V ∈ L2 and 1
|p|1−ε ∈ L2

loc imply 1
|p|1−ε V̂ ∈ L1

loc. As a tempered distribution

0 = S ′ − lim
ε→0

2

|x|1+ε
∗ V . (12)

We conclude that S ′ − limε→0
2

|p|1−ε V̂ = 0, therefore V̂ (p) = 0 a.e. . For ν > 2,

this argument shows that the restriction of V to any 2-plane in Rν is determined

uniquely.

III Reconstruction Formula for the Dirac Equa-

tion

Let H := L2(Rν ,Cµ) and H0 := α ·p + βm with m ≥ 0 and anticommuting,

symmetric, unitary matrices α1, . . . , αν , β. The most interesting case is ν = 3,

µ = 4. H0 is self-adjoint on H1(Rν). The symbol of H0 has the eigenvalues ±E,

with the abbreviation E = +
√

p2 +m2. V shall be a symmetric-matrix-valued

function. Under conditions analogous to Def.2.1 the scattering system is complete

[12, 13], but we need more restrictive conditions to prove the following theorem.

An electromagnetic field is described by V = A0 − α·A, where − gradA0 is the

electric and rotA the magnetic field. For ω ∈ Sν−1 we make the decomposition

V = V+,ω + V−,ω with V±,ω := 1/2(V ±α·ωVα·ω), which yields [V+,ω,α·ω] = 0

and {V−,ω,α ·ω} = 0. For the e.m. field we get V+,ω = A0 − α ·ω ω ·A.

As operators, the Ai are functions of the standard position operator x, which

generates momentum translations in the standard representation. We will discuss

the alternative Newton-Wigner position operator xNW below.

Theorem 3.1 (High-Energy-Asymptotics of S for the Dirac Equation)

Suppose the components of the symmetric-matrix-valued multiplication operator

V are continuous with integrable decay, i.e. ‖V F (|x| > R)‖ ∈ L1 ([0,∞), dR),

and the matrices V+,ω(x),x ∈ Rν commute, i.e. [V+,ω(x1), V+,ω(x2)] = 0 for

x1,x2 ∈ Rν. Then

s− lim
v→∞

e−ivxSeivx = exp{−i
∫ +∞

−∞
V+,ω(x + ωt)dt}. (13)

For an electromagnetic field this is exp{−i
∫+∞
−∞ (A0 −α·ω ω ·A)(x + ωt)dt}.

If the condition [V+,ω(x1), V+,ω(x2)] = 0 is violated, the exponential must be

replaced by a time-ordered product. Theorem 3.1 will be proved in the next

section, after having examined its consequences. Theorem 3.2 gives a modified
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reconstruction formula, adapted to positive energy states. Theorem 3.3 shows

how to obtain the electromagnetic field from scattering data. A general matrix-

valued potential cannot be recovered from (13), since for V = βΦ, Φ real-valued

we have V+,ω = 0.

For m > 0 and β =

(
1 0

0 −1

)
consider the Foldy-Wouthuysen-transform

U(p) =
√

E+m
2E

(
1 + β α·p

E+m

)
, which diagonalizes H0: U(α ·p + βm)U−1 = Eβ.

The Foldy-Wouthuysen-representation of Ψ is given by ψ̂FW (p) = U(p)ψ̂(p).

S is decomposed to SFW =

(
S+ 0

0 S−

)
, where S± are unitary operators on

L2(Rν ,Cµ/2) and describe the scattering of electrons with positive/negative en-

ergy. The Newton-Wigner position operator xNW is the generator of momentum

translations in the FW-representation and acts on ψFW as multiplication with the

coordinate function. It is given by U∗(p)xU(p) in the standard representation. In

contrast to x, the operator xNW does not mix the states with positive/negative

energy. This suggests to investigate e−ivxNWS eivxNW , which is decomposed to

e−ivxNWS±e
ivxNW , where the restriction of the Newton-Wigner position operator

to the positive/negative energy subspaces is also denoted by xNW .

Theorem 3.2 (High-Energy-Asymptotics of S±) Suppose that A0, A are

continuous with integrable decay. Then

s− lim
v→∞

e−ivxNWS±e
ivxNW = exp{−i

+∞∫
−∞

(A0 ∓ ω ·A)(xNW + ωt)dt} (14)

Thus the limit of S+ acts on positive energy states independent of spin.

Proof: In the standard representation, Theorem 3.1 yields

e−ivxNWS eivxNW

= U∗(p) e−ivxU(p)S U∗(p) eivxU(p)

= U∗(p)U(p + v) e−ivxS eivxU∗(p + v)U(p)

v→∞−→ U∗(p)
1√
2
(1 + βα·ω) e

−i
+∞∫
−∞

(A0−α·ω ω·A)(x+ωt)dt 1√
2
(1 − βα·ω)U(p)

= U∗(p) e
−i

+∞∫
−∞

(A0−β ω·A)(i∇p+ωt)dt

U(p) ,

where we used 1√
2
(1 + βα ·ω) α ·ω 1√

2
(1 − βα ·ω) = β. By changing to the

FW-representation, the above expression becomes

exp{−i
∫ +∞

−∞
(A0 − β ω ·A)(xNW + ωt)dt} .
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The block-structure of β yields the desired result.

Theorem 3.3 (Injectivity of the Scattering Map) Consider ν > 1 and

V := {(A0,A) | Ai ∈ C0(Rν ,R), ‖Aiχ(|x| > R)‖∞ ∈ L1 ([0,∞), dR) , A ∈
L2(Rν ,Rν)}. Then the scattering map:

(A0,A) 7→ S+

is injective on V except for gauge-invariance, i.e. S+ determines A0 uniquely and

A up to a gradient. Thus E = −gradA0, B =rotA are determined uniquely.

A cannot be determined uniquely, for if λ is vanishing at ∞, then S remains

unchanged when A is replaced by A + ∇λ. This corresponds to the facts that

the phase of a wave-function at a single point has no physical meaning, and that

only rotA is measurable.

Proof: With Theorem 3.2 we get a(x,ω) :=
∫+∞
−∞ (A0 − ω ·A)(x + ωt)dt as

in Theorem 2.4. Now 1/2 (a(x,ω) + a(x,−ω)) =
∫+∞
−∞ A0(x + ωt)dt, which

determines A0 uniquely, and1/2 (a(x,−ω) − a(x,ω)) =
∫+∞
−∞ ω ·A(x + ωt)dt,

which determines A up to a gradient (Lemma 3.4).

To prove that lemma we need the extra assumption A ∈ L2. In [8, Lemma 3.4] a

different way to reconstruct B = rotA is proposed, which does not need A ∈ L2

but A ∈ C1 with B decaying integrably.

Lemma 3.4 (Reconstruction of A) For ν > 1, consider A ∈ C0 ∩ L2(Rν ,Rν)

having integrable decay. Then A is determined up to ∇λ by
∫+∞
−∞dtω·A(x + ωt).

Proof: As in (11) one has
∫
Sν−1dω ω

∫+∞
−∞dtω·A(·+ ωt) = 2 xxT

|x|ν+1 ∗A ,which is a

bounded, continuous function of x. We will show that
∫+∞
−∞dtω ·A(x + ωt) = 0

implies A = ∇λ for a λ vanishing at ∞. In the case ν = 3 one finds (2xxT

|x|4 )∧ =√
π
2

1
|p|(1−

ppT

|p|2 ) ∈ L2 + L∞ and
√

π
2

1
|p|(1−

ppT

|p|2 )Â ∈ L1 + L2, thus

2
xxT

|x|4
∗A = 2π2(

1

|p|
Â− p

|p|3
p·Â)∨ ∈ L2 + L∞. (15)

Now
∫+∞
−∞dtω ·A(x + ωt) = 0 implies Â = p

|p|2p ·Â a.e. , thus A = ∇λ for a

λ ∈ L6
w. For ν > 3, the proof is similar, but for ν = 2 it must be modified to

include a S ′-limit as in (12).

Remark: In the Coulomb-gauge divA = 0 (in the sense of S ′), A is determined

uniquely by the integral transform: For ν = 2, one has∫ +∞

−∞
dtA(x + ωt) = ω

∫ +∞

−∞
dtω ·A(x + ωt),

and the proof of theorem 2.4 applies to the components A1, A2. For ν = 3, (15)

implies
∫
S2dω ω

∫+∞
−∞dtω·A(x+ωt) = 2π2( 1

|p|Â)∨. For ν > 3, the factor 2π2 must

be replaced by 2π
ν+1
2 /Γ(ν+1

2
).
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IV Proof of Theorem 3.1

We first discuss two preparatory lemmata:

Lemma 4.1 (Approximation of S) Let V be a matrix-valued multiplication

operator, which is H0-bounded with relative bound < 1 and satisfies

‖V
√

p2 + 1
−1

F (|x| > R)‖ ∈ L1 ([0,∞), dR) .

Then for Φ,Ψ with φ̂, ψ̂ ∈ C∞
0 there is v0 > 0 such that

lim
t→∞

(
Φ, e−ivxeiH0te−i2HteiH0teivxΨ

)
=
(
Φ, e−ivxS eivxΨ

)
(16)

uniformly in v > v0.

Proof: We first note that for φ̂ ∈ C∞
0 there are c, v0 > 0 such that

∣∣∣∣e−iH0teivx
√

p2 + 1 Φ
∣∣∣∣ (x) <

c

(1 + |t|) ν+3
2

for |x| < |t|
2
, v > v0. (17)

This is shown as in Lemma 2.2 by observing that

e−ivxe−iH0teivx = e−i
√

(p+v)2+m2tP+,v + ei
√

(p+v)2+m2tP−,v (18)

with P±,v = 1
2

(
1 ± α·(p+v)+βm√

(p+v)2+m2

)
and that ∂γ

p

(
P±,v

√
p2 + 1φ̂(p)

)
is bounded for

|γ| ≥ 0. Using the same decomposition as in the proof of Lemma 2.2, we find

h ∈ L1 such that ‖V e−iH0teivxΦ‖ ≤ h(t) for t ∈ R, v ≥ v0. Now

‖Ω+e
ivxΦ− eiHte−iH0teivxΦ‖ = ‖i

∫ ∞

t
ds eiHsV e−iH0seivxΦ‖

≤
∫ ∞

t
ds h(s) → 0 as t→∞

uniformly in v > v0. We treat Ω− and Ψ analogously, and the result for S is

obtained.

Lemma 4.2 (Limit for finite t) Suppose V has bounded, continuous compo-

nents and satisfies [V+,ω(x1), V+,ω(x2)] = 0. Then for all t > 0

s− lim
v→∞

e−ivxeiH0te−i2HteiH0teivx = exp{−i
t∫

−t

ds V+,ω(x + ωs)}. (19)
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Proof: According to Theorem X.69 in [10], we have the Dyson-expansion

eiH0te−i2HteiH0tΨ =
∞∑

n=0

(−i)n
∫

−t<t1<...<tn<t

dtn . . . dt1V (tn) . . . V (t1)Ψ (t > 0,Ψ ∈ H)

with V (s) = eiH0sV e−iH0s. In the momentum representation it is easily shown

that s− limv→∞
(
e−ivxe−iH0seivx − e−iα·ω(v+ω·p)s

)
= 0, thus

lim
v→∞

∫ t

−t
ds
(
e−ivxV (s)eivx − eiα·ω(v+ω·p)sV e−iα·ω(v+ω·p)s

)
Ψ = 0.

From α·ω V±,ω = ±V±,ω α·ω we conclude

eiα·ω(v+ω·p)sV e−iα·ω(v+ω·p)s

= eiα·ω(v+ω·p)sV+,ωe
−iα·ω(v+ω·p)s + eiα·ω(v+ω·p)sV−,ωe

−iα·ω(v+ω·p)s

= eiα·ωω·psV+,ωe
−iα·ωω·ps + ei2α·ωvseiα·ωω·psV−,ωe

−iα·ωω·ps.

The Riemann-Lebesgue Lemma yields

lim
v→∞

∫ t

−t
ds ei2α·ωvseiα·ωω·psV−,ωe

−iα·ωω·psΨ = 0

and thus limv→∞
∫ t
−tds e

−ivxV (s)eivxΨ =
∫ t
−tdsW (s)Ψ with

W (s) = eiα·ωω·psV+,ωe
−iα·ωω·ps. By induction, it is shown that

lim
v→∞

e−ivx
∫

−t<t1<...<tn<t

dtn . . . dt1V (tn) . . . V (t1)e
ivxΨ =

∫
−t<t1<...<tn<t

dtn . . . dt1W (tn) . . .W (t1)Ψ =

1

n!

∫
[−t,t]n

dtn . . . dt1W (tn) . . .W (t1)Ψ =
1

n!

( t∫
−t

dsW (s)
)n

Ψ.

Here the time-ordering in the integral was resolved because W (s) is a family

of multiplication operators satisfying [W (s1),W (s2)] = 0 for s1, s2 ∈ R, which

follows from [V+,ω(x1), V+,ω(x2)] = 0 and [α·ω, V+,ω(x)] = 0, observing that

W (s) = 1/2(1+α·ω)V+,ω(x+ωs) + 1/2(1−α·ω)V+,ω(x−ωs). This decompo-

sition also yields
∫ t
−tdsW (s) =

∫ t
−tds V+,ω(x + ωs). The Dyson-series converges

uniformly in v, thus limv→∞ and
∑∞

n=0 may be interchanged.

Proof of Theorem 3.1: The hypotheses of Lemmata 4.1, 4.2 are fulfilled. For

φ̂, ψ̂ ∈ C∞
0 an ε/3-trick shows: The uniform convergence in (16) entails that the
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following limits may be interchanged.

lim
v→∞

(
Φ, e−ivxS eivxΨ

)
= lim

v→∞
lim
t→∞

(
Φ, e−ivxeiH0te−i2HteiH0teivxΨ

)
= lim

t→∞
lim
v→∞

(
Φ, e−ivxeiH0te−i2HteiH0teivxΨ

)
= lim

t→∞

(
Φ, exp{−i

∫ t

−t
ds V+,ω(x + ωs)}Ψ

)
=

(
Φ, exp{−i

∫ ∞

−∞
ds V+,ω(x + ωs)}Ψ

)
A density argument yields weak convergence, and the unitarity of e−ivxSeivx

and of its weak limit imply the strong convergence.

V Summary and Generalizations

ForH0 =
√

p2 +m2 we obtained exp{−i
∫+∞
−∞ V (x+ωt)dt} from S for very general

short-range V , but the reconstruction of V was only accomplished for continuous

V with integrable decay.

For H0 = α·p+βm we obtained exp{−i
∫+∞
−∞ (A0−ω·A)(xNW +ωt)dt} from S+

for continuous Ai with integrable decay. The proofs of Theorems 3.1, 3.2 extend

to the case of V ∈ L∞ with ‖V
√

p2 + 1
−1
F (|x| > R)‖ ∈ L1 ([0,∞), dR). We

expect these Theorems to be true for general short-range A0, but this is not yet

proved. Lemma 4.1 holds under very general conditions, but the Dyson-expansion

in 4.2 demands that V should be bounded.

The Aharanov-Bohm-experiment suggests to consider the case ν = 2 with the

magnetic field B = rotA ∈ C0
0 . This requires the following modifications:

• Given B with
∫
B 6= 0, there is no A of integrable decay, but there are

vectorpotentials with |A(x)| < c/|x| and x
|x| ·A(x) decaying integrably. If

Ã = A +∇λ, then Λ(x) = limr→∞ λ(rx) exists and may be 6= 0.

• Choosing a special gauge with supp(A) in a cone as in [2], Theorems 3.1,

3.2 are shown to remain valid for this A.

• In a different gauge Ã we find S̃± = eiΛ(±p)S±e
−iΛ(∓p) and conclude that

also e−ivxNW S̃±e
ivxNW → exp{−i

∫+∞
−∞ (A0 ∓ ω ·Ã)(xNW + ωt)dt}.

• The gauge-invariance of S is lost, but we expect all physically measur-

able quantities to be gauge-independent. Under the idealized assumption

that phase-differences are measurable in interference-experiments, the high-

energy-limit of S+ yields a(x,ω) =
∫+∞
−∞ (A0 − ω ·A)(x + ωt)dt up to an
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additive constant (depending on ω). But A0 is supposed to decay inte-

grably, thus the symmetric part of a(x,ω) is determined uniquely, from

which A0 is obtained.

• Lemma 3.4 is not applicable, but at least B ∈ C1
0 may be obtained from the

following formula involving differentiation in the direction of $ orthogonal

to ω :∫ +∞

−∞
dtB($s+ ωt) =

d

ds

∫ +∞

−∞
dtω ·A($s+ ωt) for $ = (ω2,−ω1)

T .

(20)

Finally we mention that the Klein-Gordon equation for a charged spin-0-particle

can be treated in the same way as the Dirac equation, since the Dyson-expansion

also applies to the 2-Hilbertspace-formalism. We find the same result

e−ivxNWS±e
ivxNW → exp{−i

∫ +∞

−∞
(A0 ∓ ω ·A)(xNW + ωt)dt}. (21)
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