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Abstract

The high-energy-limit of the scattering operator for multidimensional
relativistic dynamics, including a Dirac particle in an electromagnetic field,
is investigated by using time-dependent, geometrical methods. This yields
a reconstruction formula, by which the field can be obtained uniquely from
scattering data.

I Introduction

For self-adjoint operators Hy and H = Hy + V with H, having continuous spec-
trum, the wave operators are defined by Q4 = s — limy_ 4o ete™ 0t If they
exist on H and their ranges equal H*(H), the scattering system is called com-
plete and the scattering operator S = Q% €)_ is unitary [11]. The inverse problem
is to determine V', given S (and Hy). In [4, 5, 6, 7] Enss and Weder show that for
the Schrodinger operator Hy = —1/2 A and a translation in momentum space by

v = vw, w € SY"! the high-energy-limit of the scattering operator is given by
. . +o00
((ID, iv(e_ZVXSeWX — 1)\If> — / dr ((ID, V(x+ wT)\Il) asv—o00 (1)

for suitable ®, W. The short-range potential V', a multiplication operator, can
be uniquely reconstructed from this X-ray transform. This approach generalizes
to multiparticle systems and long-range potentials.
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Following these ideas, we use time-dependent, geometrical methods to study
relativistic quantum mechanics, in particular the Dirac equation with the free
Hamiltonian Hy = a-p + #m. The main result is Theorem 3.2:

+00

s — lim eTVINW G e™VINW = exp{—i | (Ag Fw-A)(Xyw +wit)dt}  (2)

from which the electromagnetic field (Ag, A) may be reconstructed. Here Sy de-

scribe the scattering of positive/negative energy states in the Foldy-Wouthuysen-

representation, and X is the Newton-Wigner position operator. The A; are sup-

posed to be continuous and to decay integrably, i.e. [(FdR supysp |[Ai(x)] < oo,

In [8] Ito has given a similar reconstruction formula for the high-energy-limit

of the scattering amplitude using stationary methods, for A; € C? satisfying
|A;(x)] < c|x|737=.

The charge e is incorporated in A;, furthermore, we let ¢ = h = 1. Note that
— [T (AgFwA)(x+wt)dt is the classical action of a particle moving along a line
with velocity w, as expected in the semi-classical limit. Introducing suitable units
and letting ¢ — oo in the r.h.s. of (2) yields exp{i[">° w-A(x + wt)dt}, which
has been obtained by Arians [1] as the high-energy-limit of S for a Schrédinger
particle in an electromagnetic field.

For mathematical quantum mechanics we refer to [9, 10, 11] and for the Dirac
equation to [13]. In Section 2 we study Hy = /p% + m?, which is similar to the
Dirac operator, while being easier to handle. In Section 3 we examine the recon-
struction formula for the Dirac equation, which is proved in Section 4. Various
generalizations are discussed in Section 5.

II Reconstruction Formula for the Scalar Rela-

tivistic Hamiltonian

We consider H = L*(R”) and Hy = /p2+m? with m > 0 and p = —iV.
This scalar Hamiltonian Hj is self-adjoint on the Sobolev-space H'(R) as its do-
main. It may be considered as a model for relativistic quantum mechanics, since
the symbols of the Klein-Gordon- and the Dirac equation have the eigenvalues

+v/p? + m2.

Definition 2.1 (Short-range Potentials) A symmetric multiplication opera-
tor V' s called a short-range potential, if it is Hy-bounded with relative bound < 1
and satisfies

[V + 1 F(x| > B € L (0, 0), dR). (3)
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F(...) denotes multiplication with the characteristic function of the indicated re-
gion in X -space.

This definition corresponds to that of the Schrodinger case [4, 5, 6, 7]. Lo-
cal singularities of V' are possible: If, e.g., v > 1, p > vand V € LP + L™
with ||[Vx(]x| > R)|rrsz € L' ([0,00),dR), then V is short-range. (The norm
is defined by [|fllzrire = f{|[fill, + [l fllec| f = fi + f2})) For v =3,
a Yukawa-potential is also admitted, if the coupling constant is small. For a
short-range potential V' and H = Hy + V the completeness of the scattering
system follows from Theorem 2.1 in [12].

For W € H, the x-representation is given by ¢ (x) and the Fourier trans-
form z/AJ(p) yields the momentum representation of W. The position operator x
generates translations in momentum space, in particular for any v = vw € R

efivaeivx — efivx (\/m + V(X)) eivx — \/(p+V)2 +m2 —+ V(X)

Lemma 2.2 (Integrable Bound) LetV be a short-range potential. For ¥ with
P € C5° there are vy > 0, h € L'(R) such that

|Ve Hote™ || < h(t) fort € R, uniformly inv > vg. (4)

This v-independent integrable bound will be crucial to apply the dominated con-
vergence theorem in the proof of Theorem 2.3 .
Proof: We first show that there are ¢, vy > 0 such that

eiHoteivx\/I?—i—l\Ij’ (X) < (‘C’)wrg for ‘X’ < |—| , U > 1. (5>

This follows by a non-stationary phase estimate [13, p.33], [11, p.37] from

(e—ivxe—iHoteivx / 2+1‘I’) 27'(' /dpeztf(pxtv / 2+1¢ (6)

with f = (p% — \/(p +v)2+ m2> , since there is a vy > 0 such that |V, f| > 1/4
for |x/t| < 1/2,v > vy, p € supp(t)). Also 9% f is bounded there for || > 0, and
9 (\/p2 + 1@/;(p)) is bounded for |y| > 0. Now we consider

efzvxveszotezvx \/j H

- v p2+1_1{ (|X| > |t |) —|—F(|X] < M)}ez’t\/(p+V)2+m2\/p2+1\I,“
Vip?+1 1 |x|> H H\/ 2+1\11H
e <\x|<"> e 19|

IN
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The first term is in L! by (3) and the second is bounded by &/(1+|t))2 by (5). m

This decomposition is motivated by the geometrical idea that the wave-packet
is concentrated around wt , where the potential is small, and that it is small
around the origin, where the potential may be large.

Theorem 2.3 (High-Energy-Asymptotics of S) For a short-range potential
V' the high-energy limit of the scattering operator is given by

+00
VX —exp{—i [ V(x+ wt)dt}, (7)

—00

s — lim e”"V*Se

vV—00

the integral being convergent for a.e. x € R”.

Proof: It is sufficient to consider the dense set of ¥ with ¢ € C5°.
) ) oo d . ) ) )
efzvxg_i_elvx \If — \I’ 4 / dt aefzvxetheleotezvx \If
0
e (Ve v e R s e
= \IJ—I—Z/ dte V(x)e VP v
0
o0 il v/ v)24+m2—v X —i| 4/ v)2+m2—v
\If—l-i/ dte( (b e ))tV(x)e ( (o) )t\I/.
0

With v = vw we find (\/(p—i—v)2 +m2—v + V) =2 w-p+V in the strong
resolvent sense and the exponential converges strongly [9, Theorems VIII.25,21].
Vyp?+1 ' is bounded and

The integrand is bounded by h(t) independent of v > vy by Lemma 2.2 . Using
the dominated convergence theorem (for the Bochner-integral [3]) we conclude
that

V—00

lim e’i"xQ+ei"X\IJ = U +i/ dt ei(prrV(x))tV(X)eprtqj
0

— i e (wptV()S —iwpS p (8)

In the special case of continuous V' with integrable decay , (8) is shown to equal
exp{i [°dt V(x + wt)} ¥ by considering the family of unitary operators U(s) =
ei“’pse_i(“’p“/(x))s, which satisfies the differential equation

iU(s) = €5V (x) e =PV S — V(x4 ws)U(s)

and U(0) = 1, as does exp{—i [ydt V (x +wt)}. For general V' we use the decom-
position V =V, —V_, V4 > 0 and choose V,, + € Cg with V,,+ 7 Vi ae.. Let
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V= V4 — V, —. The estimate of the integral by an integrable function h from
Lemma 2.2 also holds for Vi,V +,V,, uniformly in n. Again, by applying the
dominated convergence theorem once more, we deduce

lim e ™*Q e = U4 lim / dt eI @WPHVLY p—iwptyy
0

V—00 n—oo

— lim exp{i/ dt Vy(x + wt)} 0.
n—oo O

Also we see that for a subsequence lim,, .. exp{i [;°dt V,, , (x + wt)} exists for
a.e. X € R, therefore [;°dtV,(x+ wt) exists for a.e. x since for a.e. x the
monotone convergence V,, . (x + wt) / Vi(x + wt) holds for a.e. t € R. We
consider €_ similarly and find

. . +oo
s — lim e”"*Que™* = exp{i dtV(x+ wt)}. 9)
V—00 0
Using S = (27 €2_ we get the desired reconstruction formula
. ) +oo
w — lim e”"*5e™* = exp{—i V(x + wt)dt}. (10)

The unitarity of e~®*Se™* and of its weak limit imply the strong convergence.

]
The proof suggests the following physical interpretation: If the velocity of a
particle approaches 1 (i.e. the speed of light), the spreading of the wave-packet
is negligible and the free kinematics reduce to a pure translation.

Theorem 2.4 (Injectivity of the Scattering Map) Consider v > 1 and
V:={V e C'R",R)| [Vx(|x| > R)|ls € L' ([0,00),dR)}. Then the scattering

map:

YV — L(H)
V - S:S(Ho,H0+V)

is injective, i.e. S determines V uniquely.

The case v = 1 cannot be treated with our methods. The case of more general V'
shall be a topic of further research, the difficulties arising from the non-injectivity
of the exponential function.

Proof: Theorem 2.3 yields exp{—i /"2 V(x + wt)dt} as a continuous function
of x, thus giving [T°V(x + wt)dt up to a fixed multiple of 2r. This X-ray
transform is obtained uniquely, since it must vanish as |x| — oo orthogonal to w.
If [*2%dt V (x + wt) = 0, then considering wt as polar coordinates for R” yields

+o00o
0 :/ dw dtV(x +wt) = 2/dyV|(X+Y). (11)
Sv—1

o0 y[r=
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To show that V' is determined uniquely, we examine the case v = 2 first. Here
V € L? and m%_g € L}, imply m%_gv € L},.. As a tempered distribution

loc

— [
0=3§ ll_r,% [x[1 e

*V. (12)

We conclude that &' — lim._,q M%V = 0, therefore V(p) =0 a.e. . For v > 2,
this argument shows that the restriction of V' to any 2-plane in R” is determined
uniquely. [ ]

IITI Reconstruction Formula for the Dirac Equa-
tion

Let H := L?*(R",C*) and Hy := a-p + Bm with m > 0 and anticommuting,
symmetric, unitary matrices ayq,...,a,, 3. The most interesting case is v = 3,
p = 4. Hy is self-adjoint on H'(R"). The symbol of Hy has the eigenvalues +F),
with the abbreviation E = ++/p? +m2. V shall be a symmetric-matrix-valued
function. Under conditions analogous to Def.2.1 the scattering system is complete
[12, 13], but we need more restrictive conditions to prove the following theorem.
An electromagnetic field is described by V = Ay — a- A, where — grad Ay is the
electric and rot A the magnetic field. For w € S*~! we make the decomposition
V=V,u+V_,with Vi, :=1/2(V + a-wVa-w), which yields [V} ,, a-w| =0
and {V_,,a-w} = 0. For the em. field we get Vi, = Ay — a-ww-A.
As operators, the A; are functions of the standard position operator x, which
generates momentum translations in the standard representation. We will discuss
the alternative Newton-Wigner position operator Xy, below.

Theorem 3.1 (High-Energy-Asymptotics of S for the Dirac Equation)
Suppose the components of the symmetric-matriz-valued multiplication operator
V' are continuous with integrable decay, i.e. ||VF(|x| > R)|| € L' ([0,00),dR),
and the matrices Vi ,(x),x € R” commute, i.e. [Vi(x1),Viw(x2)] = 0 for
X1,X9 € R”. Then

) . +oo
s — lim e”"V*Se™* = exp{—i/ Vi w(x + wt)dt}. (13)

For an electromagnetic field this is exp{—i 72 (Ag — a-ww-A)(x + wt)dt}.

If the condition [V ,(x1), Vi w(x2)] = 0 is violated, the exponential must be
replaced by a time-ordered product. Theorem 3.1 will be proved in the next
section, after having examined its consequences. Theorem 3.2 gives a modified
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reconstruction formula, adapted to positive energy states. Theorem 3.3 shows
how to obtain the electromagnetic field from scattering data. A general matrix-
valued potential cannot be recovered from (13), since for V' = &, ® real-valued
we have V ,, = 0.
Form>0andﬁ:<1 0
0 -1
U(p) = w%“—é"(l + ﬁ%), which diagonalizes Hy: U(a-p + fm)U~' = EfS.
The Foldy-Wouthuysen-representation of ¥ is given by @/;Fw(p) =U (p)g&(p)
Sy 0
0 S_
L%(R”,C*?) and describe the scattering of electrons with positive/negative en-

) consider the Foldy-Wouthuysen-transform

S is decomposed to Spy = < ), where Sy are unitary operators on

ergy. The Newton-Wigner position operator Xy is the generator of momentum
translations in the FW-representation and acts on ., as multiplication with the
coordinate function. It is given by U*(p)xU (p) in the standard representation. In
contrast to x, the operator xyy, does not mix the states with positive/negative
energy. This suggests to investigate e ®V*¥w S ¢?V*Nw  which is decomposed to
e~ vxNw G VXN where the restriction of the Newton-Wigner position operator
to the positive/negative energy subspaces is also denoted by Xy .

Theorem 3.2 (High-Energy-Asymptotics of Si) Suppose that Ay, A are

continuous with integrable decay. Then
+oo
s — lim e ™VNW G, VNV = exp{—i | (Ag F w-A)(Xyw + wt)dt} (14)

V—00
—00

Thus the limit of S acts on positive energy states independent of spin.
Proof: In the standard representation, Theorem 3.1 yields

e—iVXNW‘SV eiVXNW
— U* (p) efiva(p) S U*(p) eiva(p)
= U'pUp+v)e™V*SeV*U*(p+v)U(p)

V—00 * ]_ 7ijoo(A07WWA)(X+wt)dt 1

— v (p)ﬁ(l T baw)e ﬁ(l — fo-w)U(p)
*i?w(AofﬁwA)(in+wt)dt

= Ullpe = U(p).

where we used %(1 + fa-w)a-w %(1 — fo-w) = 3. By changing to the
FW-representation, the above expression becomes

“+o00

exp{—i 3 (Ag — fw-A)(xyw + wt)dt} .
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The block-structure of 3 yields the desired result. ]

Theorem 3.3 (Injectivity of the Scattering Map) Consider v > 1 and
V= {(4p,A)] 4 € C'R",R),||Aix(|x] > R)||le € L'([0,0),dR), A €
L*(R”,R")}. Then the scattering map:

(A07A) = S+

1s 1njective on 'V except for gauge-invariance, i.e. Sy determines Ay uniquely and
A up to a gradient. Thus E = —gradAgy, B =rotA are determined uniquely.

A cannot be determined uniquely, for if A\ is vanishing at oo, then S remains
unchanged when A is replaced by A + V. This corresponds to the facts that
the phase of a wave-function at a single point has no physical meaning, and that
only rotA is measurable.

Proof: With Theorem 3.2 we get a(x,w) = [T2°(Ay — w-A)(x + wt)dt as
in Theorem 2.4. Now 1/2(a(x,w) + a(x,—w)) = [ As(x + wt)dt, which
determines Ay uniquely, and1/2 (a(x, —w) — a(x,w)) = [ w-A(x + wt)dt,
which determines A up to a gradient (Lemma 3.4). u
To prove that lemma we need the extra assumption A € L?. In [8, Lemma 3.4] a
different way to reconstruct B = rot A is proposed, which does not need A € L?
but A € C* with B decaying integrably.

Lemma 3.4 (Reconstruction of A) Forv > 1, consider A € C° N L*(R*,R¥)
having integrable decay. Then A is determined up to VI by [T25dt w-A(x + wt).
Proof: Asin (11) one has [gdww [TZdt w-A(- + wt) = 2@% « A ,which is a
bounded, continuous function of x. We will show that [*2dtw-A(x + wt) =0
implies A = V)\ for a A vanishing at co. In the case v = 3 one finds (Q%V =

2 00 1 2
\/>|p\ \p|2 € L* + L*° and \/>\p| |p|2 )A el + L thus
2xxT A =2 ( A AY el? 1™ (15)
KA =T - 7p .
|x|* pl”  |pP?

Now [T%dtw-A(x + wt) = 0 implies A = WP'A a.e. , thus A = VA for a
A € LS. For v > 3, the proof is similar, but for v = 2 it must be modified to
include a &’-limit as in (12). n
Remark: In the Coulomb-gauge divA = 0 (in the sense of §’), A is determined
uniquely by the integral transform: For v = 2, one has
+o0 +o0
dt A(x + wt) = w dt w-A(x + wt),

and the proof of theorem 2.4 applies to the components A;, A;. For v = 3, (15)
implies [gdw w [TXdt w-A(x +wt) = 27T2(ﬁA)V. For v > 3, the factor 27% must
be replaced by 273 /T(4E1).
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IV  Proof of Theorem 3.1

We first discuss two preparatory lemmata:

Lemma 4.1 (Approximation of S) Let V' be a matriz-valued multiplication
operator, which is Hy-bounded with relative bound < 1 and satisfies

IIVy/p?+ 1 F(]x| > R)|| € L' ([0, ), dR) .
Then for ®, ¥ with qg,zﬁ € C§° there is vy > 0 such that
: —ivx iHot —i2Ht iHpt ivx _ —iVX VX
tll)r&((b,e et eote \D)—((I>,e Se \I'> (16)

uniformly in v > vy.

Proof: We first note that for QAS € C§° there are c,vy > 0 such that

e—zHotezvx\/I)Q—_Hq)‘ (x) < W for |x| < ’2‘ v > . (17)

This is shown as in Lemma 2.2 by observing that

6—zvx€—1H0t ivx _ —iy/(p+v) +m2tp v+ e i/ ( p+v)2+m2t (18)

with P, = (1 + %) and that 03 (Piv‘/ 2 4+ gb( )) is bounded for

|| > 0. Using the same decomposition as in the proof of Lemma 2.2, we find
h € L' such that ||Ve iHote?™vxd|| < h(t) for t € R, v > vg. Now

HQ ezvxcb —iHot ZVXq)H _ HZ_/OodseiHsvefiHoseivxq)H
t

< /dsh(s)—>0 ast — 00
t

uniformly in v > vy. We treat 2_ and ¥ analogously, and the result for S is
obtained. ]

Lemma 4.2 (Limit for finite ¢) Suppose V' has bounded, continuous compo-
nents and satisfies [Vi o(X1), Viw(x2)] = 0. Then for allt >0

¢
5 — lim e "VXe!Hotgmi2HE gitlot givx exp{—i/ds Viw(x+ws)}. (19)

V—00
—t
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Proof: According to Theorem X.69 in [10], we have the Dyson-expansion

eflote 2 i gitloly — 3™ ()" / dty...dt,V(t,) ... V(¥ (t>0,¥ € H)

n=0 —t<t <<t <t

with V(s) = etHo5V ¢7tH0S  In the momentum representation it is easily shown
that s — lim,_, (e*i"xe*iH‘)Sei"x — e*iW(Uerp)S) =0, thus

lim dS ( zvxv<s)eivx . eio«u(v—l—wp)sve—iw(v—&-wp)s)\l} = 0.

V—00
From a¢-w V4, = £V4 ,, o-w we conclude

aw(’U—l—wp)SV e—iow(v—l—wp)S
— elaw(’Uerp)S VJﬁwe*zw(Uerp)S + ezow(’Uerp)SVi’weflaw(U+wp)S

e

ioawprV+ we—iowwps + eiZowUSQ

ioawprV e—ioswpr
_w .
The Riemann-Lebesgue Lemma yields

¢ , 4

lim / ds 612wvsezawprV77wefzwpr\I] =0
V—00 —t

and thus lim, ., [*,ds eV (5)e"* ¥ = [*,ds W (s)¥ with

W(s) = e'@«Psy, e "®«Ps By induction, it is shown that

lim e~ / dty...dtV(t,) ... V(t)e™™ ¥ =

V—00
—t<t1 <... <tp <t

dty...dW(t) ... W(t)¥ =

— <ty <...<tp <t

/dt AW (). W)Y = ;(/dsW(s)le/.

[—t4n

Here the time-ordering in the integral was resolved because W (s) is a family
of multiplication operators satisfying [W(s1), W(s2)] = 0 for s, so € R, which
follows from [V ,(x1), Viw(x2)] = 0 and [a-w, Vi ,(x)] =0, observing that
W(s)=1/2(14+ ovw) Vi o(x+ws) + 1/2(1 — a-w) V4 o(x — ws). This decompo-
sition also yields [*,ds W (s) = [*,dsV, ,(x + ws). The Dyson-series converges
uniformly in v, thus lim,_., and > 7, may be interchanged. [ ]

Proof of Theorem 3.1: The hypotheses of Lemmata 4.1, 4.2 are fulfilled. For
¢, € C§° an &/3-trick shows: The uniform convergence in (16) entails that the
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following limits may be interchanged.

lim ((1)7 e—zvxS €ZVX\II) — lim lim (@7 e—zvxezHote—QHtezHotezvx\Ij)

V—00 V—00 t—00

— lim lim (CI), e—zvxezHote—ZZHtezHotezvx‘;[j)

t—o00 v—00
t
= lim (<I>, exp{—i/ ds Vi o(x+ws)} \If)
= ((I), exp{—i/oods Viw(x+ws)} \If)

A density argument yields weak convergence, and the unitarity of e *V*Sev*
and of its weak limit imply the strong convergence. [ ]

V Summary and Generalizations

For Hy = \/p? + m?2 we obtained exp{—i[">° V(x+wt)dt} from S for very general
short-range V', but the reconstruction of V' was only accomplished for continuous
V' with integrable decay.

For Hy = ap+m we obtained exp{—i["° (Ag—w-A)(Xyw +wt)dt} from S,
for continuous A; with integrable decay. The proofs of Theorems 3.1, 3.2 extend
to the case of V € L with |Vy/p?+1 F(jx| > R)|| € L' ([0,),dR). We
expect these Theorems to be true for general short-range Ag, but this is not yet
proved. Lemma 4.1 holds under very general conditions, but the Dyson-expansion
in 4.2 demands that V' should be bounded.

The Aharanov-Bohm-experiment suggests to consider the case v = 2 with the
magnetic field B = rotA € C§. This requires the following modifications:

e Given B with [ B # 0, there is no A of integrable decay, but there are
vectorpotentials with |A(x)| < ¢/|x| and % -A(x) decaying integrably. If

x|

A = A + V), then A(x) = lim,_, A\(rX) exists and may be # 0.

e Choosing a special gauge with supp(A) in a cone as in [2], Theorems 3.1,
3.2 are shown to remain valid for this A.

e In a different gauge A we find S, = e*EP)S, ¢~AFP) and conclude that
also e=™VVw S, eVXNw s exp{ —i [T (Ag T w-A) (X + wit)dt}.

e The gauge-invariance of S is lost, but we expect all physically measur-
able quantities to be gauge-independent. Under the idealized assumption
that phase-differences are measurable in interference-experiments, the high-
energy-limit of S, yields a(x,w) = [T (Ag — w-A)(x + wt)dt up to an
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additive constant (depending on w). But A is supposed to decay inte-
grably, thus the symmetric part of a(x,w) is determined uniquely, from
which Ag is obtained.

e Lemma 3.4 is not applicable, but at least B € C} may be obtained from the
following formula involving differentiation in the direction of zo orthogonal

to w :
+00 d +00
dt B(wos + wt) = Is dtw-A(ws +wt) for = (wy, —w;)’.
—00 S J—o0

(20)

Finally we mention that the Klein-Gordon equation for a charged spin-0O-particle
can be treated in the same way as the Dirac equation, since the Dyson-expansion
also applies to the 2-Hilbertspace-formalism. We find the same result

+oo

e VENW G eVXNW  exp{—i (Ag F w-A)(xyw + wt)dt}. (21)

[e.9]
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