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Abstract

For complex quadratic polynomials, the topology of the Julia set and the dynamics
are understood from another perspective by considering the Hausdorff dimension of
biaccessing angles and the core entropy: the topological entropy on the Hubbard tree.
These quantities are related according to Thurston. Tiozzo [60] has shown continu-
ity on principal veins of the Mandelbrot set M . This result is extended to all veins
here, and it is shown that continuity with respect to the external angle θ will imply
continuity in the parameter c. Level sets of the biaccessibility dimension are de-
scribed, which are related to renormalization. Hölder asymptotics at rational angles
are found, confirming the Hölder exponent given by Bruin–Schleicher [11]. Partial
results towards local maxima at dyadic angles are obtained as well, and a possible
self-similarity of the dimension as a function of the external angle is suggested.

1 Introduction

For a real unimodal map f (x), the topological entropy h = logλ is quantifying the com-
plexity of iteration: e.g., the number of monotonic branches of f n(x) grows like λ n.
Moreover, f (x) is semi-conjugate to a tent map of slope ±λ ; so λ is an averaged rate
of expansion, which is a topological invariant [38, 42, 2]. Consider a complex quadratic
polynomial fc(z) = z2 + c with its filled Julia set Kc , which is defined in Section 2:

• At least in the postcritically finite case, the interesting dynamics happens on the
Hubbard tree Tc ⊂Kc : other arcs are iterated homeomorphically to Tc , which is
folded over itself, producing chaotic behavior. The core entropy h(c) is the topo-
logical entropy of fc(z) on Tc [1, 31, 57].

• On the other hand, for c 6= −2 the external angles of these arcs have measure 0,
and the endpoints of Kc correspond to angles of full measure in the circle. This
phenomenon is quantified by the Hausdorff dimension Btop(c) of biaccessing angles:
the biaccessibility dimension [63, 67, 51, 10, 36, 11].

According to Thurston, these quantities are related by h(c) = log2 ·Btop(c), which allows
to combine tools from different approaches: e.g., Btop(c) is easily defined for every param-
eter c in the Mandelbrot set M , but hard to compute explicitly. h(c) is easy to compute
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and to analyze when fc(z) is postcritically finite. But for some parameters c, the core may
become too large by taking the closure of the connected hull of the critical orbit in Kc .
The postcritically finite case is discussed in Section 3. A Markov matrix A is associated
to the Hubbard tree, describing transitions between the edges. Its largest eigenvalue λ

gives the core entropy h(c) = logλ . An alternative matrix is due to Thurston [21, 22].
Or λ is obtained from matching conditions for a piecewise-linear model with constant
expansion rate. This approach is more convenient for computing specific examples, but
the matrix A may be easier to analyze. Known results are extended to all renormalizable
maps fc(z). Here A is reducible or imprimitive, and its blocks are compared: pure satellite
renormalization gives a rescaling h(cp ∗ ĉ) = 1

p h(ĉ) . Lower bounds of h(c) for β -type
Misiurewicz points and for primitive centers show that in the primitive renormalizable
case, the dynamics on the small Julia sets is negligible in terms of entropy, so h(c) is
constant on maximal-primitive small Mandelbrot sets Mp ⊂M . Moreover, it is strictly
monotonic between them. An alternative proof of h(c) = log2 ·Btop(c) shows that the
external angles of Tc have finite positive Hausdorff measure.
In Section 4, the biaccessibility dimension is defined combinatorially for every angle
θ ∈ S1 and topologically for every parameter c∈M . When c belongs to the impression of
the parameter ray RM(θ), we have Btop(c) = Bcomb(θ) [10]. This relation means that non-
landing dynamic rays have angles of negligible Hausdorff dimension, but a discussion
of non-local connectivity is avoided here by generalizing results from the postcritically
finite case: the biaccessibility dimension is constant on maximal-primitive Mandelbrot
sets, and strictly monotonic between them. Components of a level set of positive Btop(c)
are maximal-primitive Mandelbrot sets or points. Examples of accumulation of point
components are discussed. In [11, 60] the Thurston relation h(c) = log2 ·Btop(c) was
obtained for all parameters c, such that the core Tc is topologically finite. The proof
extends to compact trees with infinitely many endpoints.
In an email of March 2012 quoted in [21], Thurston announced proofs of continuity for
Bcomb(θ) by Hubbard, Bruin–Schleicher, and himself. In May 2012, a proof with symbolic
dynamics was given in [11], but it is currently under revision. In the present paper, it is
shown that continuity of Bcomb(θ) on S1 will imply continuity of Btop(c) on M . Again, a
discussion of non-local connectivity can be avoided, since the biaccessibility dimension is
constant on primitive Mandelbrot sets. See version 2 of [11] for an alternative argument.
Tiozzo [60] has shown that h(c) and Btop(c) are continuous on principal veins of M ; this
result is extended to all veins here.
In Section 5, statements of Bruin–Schleicher, Zakeri, and Tiozzo [10, 11, 65, 66, 60]
on the biaccessibility dimension of M are generalized to arbitrary pieces. In Section 6,
Markov matrices are used again to show a geometric scaling behavior of the core entropy
for specific sequences of angles, which converge to rational angles; for these examples
the Hölder exponent of Bcomb(θ) given in [11] is optimal. The asymptotics of sequences
suggests the question, whether the graph of Bcomb(θ) is self-similar; cf. the example in
Figure 1. Partial results towards the Tiozzo Conjecture [60] are obtained as well, which is
concerning local maxima of Bcomb(θ) at dyadic angles. Some computations of character-
istic polynomials are sketched in Appendix A. For the real case, statements on piecewise-
linear models [38] and on the distribution of Galois conjugates [58, 59, 61] are reported
in Appendix B to round off the discussion. See [10, 11] for the approach with symbolic
dynamics and [21, 22] for the structure of critical portraits.
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The present paper aims at a systematic exposition of algebraic and analytic aspects; so it
contains a mixture of well-known, extended, and new results. I have tried to give proper
credits and references to previous or independent work, and I apologize for possible omis-
sions. Several people are working on reconstructing and extending Bill Thurston’s results.
I have been inspired by hints from or discussions with Henk Bruin, Gao Yan, Sarah Koch,
Michael Mertens, Dierk Schleicher, Tan Lei, and Giulio Tiozzo.
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Figure 1: The biaccessibility dimension is related to the growth factor λ by Bcomb(θ) =

log(λ (θ))/ log2. Consider zooms of λ (θ) centered at θ0 = 1/4 with λ0 = 1.69562077. The
width is 0.201×2−n and the height is 1.258×λ

−n
0 . There seems to be a local maximum at θ0 and

a kind of self-similarity with respect to the combined scaling by 2 and by λ0 . See Example 6.1 for
the asymptotics of Bcomb(θ) on specific sequences of angles θn→ θ0 .
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2 Background

A short introduction to the complex dynamics of quadratic polynomials is given to fix
some notations. The definitions of topological entropy and of Hausdorff dimension are
recalled, and concepts for non-negative matrices are discussed.

2.1 Quadratic dynamics

Quadratic polynomials are parametrized conveniently as fc(z) = z2 + c. The filled Julia
set Kc contains all points z with a bounded orbit under the iteration, and the Mandelbrot
set M contains those parameters c, such that Kc is connected. Dynamic rays Rc(ϕ)
are curves approaching ∂Kc from the exterior, having the angle 2πϕ at ∞, such that
fc(Rc(ϕ)) = Rc(2ϕ). They are defined as preimages of straight rays under the Böttcher
map Φc : Ĉ\Kc→ Ĉ\D. Parameter rays RM(θ) approach ∂M [40, 49]; they are defined
in terms of the Douady map ΦM : Ĉ\M → Ĉ\D with ΦM(c) :=Φc(c). The landing point
is denoted by z = γc(ϕ) or c = γM(θ), respectively, but the rays need not land for irrational
angles, see Figure 3. There are two cases of postcritically finite dynamics:

• When the parameter c is a Misiurewicz point, the critical value z = c is strictly
preperiodic. Both c ∈ ∂M and c ∈ ∂Kc have the same external angles, which are
preperiodic under doubling.

• When c is the center of a hyperbolic component, the critical orbit is periodic and
contained in superattracting basins. The external angles of the root of the compo-
nent coincide with the characteristic angles of the Fatou basin around z = c ; the
characteristic point may have more periodic angles in the satellite case.

In both cases, the Hubbard tree [16, 26] is obtained by connecting the critical orbit with
regulated arcs, which are traveling through Fatou basins along internal rays. Fixing a
characteristic angle θ of c, the circle S1 =R/Z is partitioned by the diameter joining θ/2
and (θ +1)/2 and the orbit of an angle ϕ ∈ S1 under doubling is encoded by a sequence
of symbols A, B, ∗ or 1, 0, ∗. There is a corresponding partition of the filled Julia set, so
points z ∈Kc are described by symbolic dynamics as well. The kneading sequence is the
itinerary of θ or of c, see [26, 49, 10].
M consists of the closed main cardioid and its limbs, which are labeled by the rotation
number at the fixed point αc ; the other fixed point βc is an endpoint of Kc . A partial
order on M is defined such that c ≺ c′ when c′ is disconnected from 0 in M \ {c}. See
Sections 3.3 and 4.1 for the notion of renormalization [14, 15, 25, 39, 48, 28], which is ex-
plaining small Julia sets within Julia sets and small Mandelbrot sets within the Mandelbrot
set. Primitive and satellite renormalization may be nested; a primitive small Mandelbrot
set will be called maximal-primitive, if it is not contained in another primitive one. A
pure satellite is attached to the main cardioid by a series of satellite bifurcations, so it is
not contained in a primitive Mandelbrot set.

2.2 Topological entropy

Suppose X is a compact metric space and f : X → X is continuous. The topological
entropy is measuring the complexity of iteration from the growth rate of the number of
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distinguishable orbits. The first definition assumes an open cover U and considers the
minimal cardinality VU(n) of a subcover, such that all points in a set of the subcover have
the same itinerary with respect to U for n steps. See, e.g., [17, 31]. The second definition
is using the minimal number Vε(n) of points, such that every orbit is ε-shadowed by one
of these points for n steps [8, 37]. We have

htop( f , X) := sup
U

lim
n→∞

1
n

logVU(n) = lim
ε→0

limsup
n→∞

1
n

logVε(n) . (1)

For a continuous, piecewise-monotonic interval map, the growth rate of monotonic
branches (laps) may be used instead, or the maximal growth rate of preimages [42, 17].
The same result applies to endomorphisms of a finite tree [2, 31]. Moreover, f is semi-
conjugate to a piecewise-linear model of constant expansion rate λ when htop( f , X) =
logλ > 0; this is shown in [38, 17, 2] for interval maps and in [4] for tree maps. See
Section B for the relation to the kneading determinant and Section 4.4 for continuity re-
sults [38, 42, 43, 17, 2]. If π : X → Y is a surjective semi-conjugation from f : X → X
to g : Y → Y , then htop(g, Y )≤ htop( f , X). Equality follows when every fiber is finite, but
fiber cardinality need not be bounded globally [8, 37].

2.3 Hausdorff dimension

The d-dimensional Hausdorff measure is a Borel outer measure. It is defined as follows
for a bounded subset X ⊂ R or a subset X ⊂ S1 = R/Z :

µd(X) := lim
ε→0

inf
U ∑

i
|Ui|d (2)

Here the cover U of X is a countable family of intervals Ui of length |Ui| ≤ ε . They may
be assumed to be open or closed, aligned to nested grids or not, but the important point is
that they may be of different size. When an interval is replaced with two subintervals, the
sum may grow in fact when d < 1. In general, the Hausdorff measure of X may be easy
to bound from above by using intervals of the same size, but it will be hard to bound from
below, since this requires to find an optimal cover with intervals of different sizes.
The Hausdorff dimension dim(X) is the unique number in [0, 1], such that µd(X) = ∞

for 0 ≤ d < dim(X) and µd(X) = 0 for dim(X) < d ≤ 1. For d = dim(X), the Haus-
dorff measure µd(X) may be 0, positive and finite, or ∞. The Hausdorff dimension of a
countable set is 0 and the dimension of a countable union is the supremum of the dimen-
sions. Again, dim(X) may be easy to bound from above by the box dimension, which
corresponds to equidistant covers, but it is harder to bound from below. Sometimes this is
achieved by constructing a suitable mass distribution according to the Frostman Lemma
[19, 65]. When X ⊂ S1 is closed and invariant under doubling F(ϕ) = 2ϕ , the Hausdorff
dimension dim(X) is equal to the box dimension according to Furstenberg [20].

2.4 Perron–Frobenius theory

The Perron theory of matrices with positive elements was extended by Frobenius to non-
negative matrices, see [24]. We shall need the following features of a square matrix A≥ 0:
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• There is a non-negative eigenvalue λ with non-negative eigenvector, such that all
eigenvalues of A are ≤ λ in modulus. λ is bounded above by the maximal sum of
rows or columns, and bounded below by the minimal sum.

• A ≥ 0 is called reducible, if it is conjugate to a block-triangular matrix by a per-
mutation. It is irreducible (ergodic) if the corresponding directed graph is strongly
connected. Then λ is positive and it is an algebraically simple eigenvalue. The
eigenvector of λ is positive, and other eigenvectors are not non-negative.

• An irreducible A ≥ 0 is called primitive (mixing), if the other eigenvalues have
modulus < λ . Equivalently, An > 0 element-wise for some n.

• If A is irreducible but imprimitive with p > 1 eigenvalues of modulus λ , its charac-
teristic polynomial is of the form xkP(xp). The Frobenius normal form shows that
there are p subspaces mapped cyclically by A.

• If B≥ A element-wise with B 6= A and A is primitive, then λB > λA . This is proved
by choosing n with An > 0, noting Bn ≥ An, so Bn+1 is strictly larger than An+1 in
at least one row and one column, and finally B2n+1 > A2n+1. Now fix ε > 0 with
B2n+1 ≥ (1+ ε)A2n+1 and consider higher powers to show λB ≥ 2n+1

√
1+ ε λA .

To obtain λ numerically from A ≥ 0, we do not need to determine the characteristic
polynomial and its roots: for some positive vector v0 compute vn = Anv0 recursively, then
λ = lim n

√
‖vn‖ converges slowly. If A is irreducible and primitive, λ = lim‖vn+1‖/‖vn‖

will converge exponentially fast.

3 Postcritically finite polynomials and core entropy

Suppose fc(z) is postcritically finite and consider the Hubbard tree Tc . Since the col-
lection of vertices is forward invariant, each edge is mapped to one edge or to several
adjacent edges. Thus the edges form a Markov partition (strictly speaking, a tessellation).
By numbering the edges, the map is described by a non-negative matrix A with entries 0
and 1, such that the j-th column is showing where the j-th edge of Tc is mapped by fc(z).
The Markov matrix A is the transition matrix of the Markov partition and the adjacency
matrix of the Markov diagram. Often the transposed matrix is used instead. In the prepe-
riodic case, no postcritical point is mapped to the critical point z = 0. So we still have a
Markov partition when the two edges at 0 are considered as one edge, but mapping this
edge will cover the edge before z = c twice, resulting in an entry of 2 in A.

Definition 3.1 (Markov matrix and core entropy)
For a postcritically finite quadratic polynomial fc(z), the Markov matrix A is the transi-
tion matrix for the edges of the Hubbard tree Tc . Its highest eigenvalue λ gives the core
entropy h(c) := logλ . Equivalently, h(c) := htop( fc , Tc) is the topological entropy on Tc .

The i-th row of A says which edges are mapped to an arc covering the i-th edge. Since
fc : Tc→ Tc is surjective and at most 2:1, the sum of each row of A is 1 or 2, so the highest
eigenvalue of A satisfies 1 ≤ λ ≤ 2. The largest entries of An are growing as � λ n when
λ > 1. (Not as nkλ n : according to Section 3.3, A may be reducible but λ > 1 corresponds
to a unique irreducible block, which need not be primitive.) Since the entries of An give
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the number of preimages of edges, the same estimate applies to the maximal cardinality
of preimages f−n

c (z0) in Tc . There are various ways to show that logλ is the topological
entropy of fc(z) on the Hubbard tree Tc :

• By expansivity, every edge is iterated to an edge at z = 0, so the preimages of 0 are
growing by λ n even if the edges at 0 correspond to an irreducible block of lower
eigenvalues. So the number of monotonic branches of f n

c (z) is growing by the same
rate, which determines the topological entropy according to [2].

• This criterion is obtained from the definition according to Section 2.2 by showing
that the open cover may be replaced with closed arcs having common endpoints,
and that the maximal growth rate is attained already for the given edges [17, 31].

• According to [4], fc(z) on Tc is semi-conjugate to a piecewise-linear model with
constant expansion rate λ when the topological entropy is logλ > 0. See also
[38, 17] for real parameters and [60] for parameters on veins. Now the highest
eigenvector of the transposed matrix A′ is assigning a Markov length to the edges,
such that fc(z) corresponds to multiplying the length with λ . Note that according
to the decomposition (3) in Section 3.3, the edges in a primitive small Julia set have
Markov length 0 and will be squeezed to points by the semi-conjugation.

3.1 Computing the core entropy

Let us start with four examples of postcritically finite parameters c in the 1/3-limb of M .
The external angle θ = 3/15 gives a primitive center of period 4. The other examples are
preperiodic and the edges at z = 0 are united. θ = 1/4 defines a β -type Misiurewicz point
of preperiod 2 and θ = 9/56 gives an α-type Misiurewicz point of preperiod 3 and ray
period 3; it is satellite renormalizable of period 3 and the Markov matrix A is imprimitive
of index 3. And θ = 1/6 gives c = i, a Misiurewicz point with preperiod 1 and period 2.

T
T
T

�
�
�sc2

sc1

s c3 T
T
T

�
�
�sc2

sc1

s c3 T
T
T

�
�
�sc2

sc1

s c3 T
T
T

�
�
�sc2

sc1

s c3sc4 sc4

θ = 3
15

0 = c4 7→ c1

λ = 1.395337
λ 4−2λ −1 = 0


0 0 1 1
1 0 0 0
0 1 0 0
0 1 1 0



θ = 1
4

βc = c3 7→ c3

λ = 1.695621
λ 3−λ 2−2 = 0

 0 0 2
1 0 0
0 1 1



θ = 9
56

αc = c4 7→ c4

λ = 1.259921
λ 3−2 = 0

 0 0 2
1 0 0
0 1 0



θ = 1
6

c3 7→ c2

λ = 1.521380
λ 3−λ −2 = 0

 0 0 2
1 0 1
0 1 0



Figure 2: Examples of Hubbard trees and Markov matrices defined by an angle θ . Here fc(z)
maps c = c1 7→ c2 7→ c3 7→ c4 and the edges are numbered such that the first edge is before c1 = c.
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Instead of computing the characteristic polynomial of the Markov matrix A, we may use
a piecewise-linear model with expansion constant λ > 1 to be matched: in Figure 2, the
edges or arcs from αc to c1 , c2 , c3 have length λ , λ 2, λ 3 when [0,±αc] has length 1.
For θ = 3/15, we have [−αc , c3] 7→ [αc , c4], so λ (λ 3−2) = 1.
For θ = 1/4, we have [−αc , c3] 7→ [αc , c3], so λ (λ 3−2) = λ 3.
For θ = 9/56, we have c3 =−αc , so λ 3 = 2.
For θ = 1/6, we have [−αc , c3] 7→ [αc , c2], so λ (λ 3−2) = λ 2.

Example 3.2 (Lowest periods and preperiods in limbs)
The p/q-limb of M contains those parameters c, such that the fixed point αc has the
rotation number p/q. The principal vein is the arc from 0 to the β -type Misiurewicz point
of preperiod q−1. The examples in Figure 2 can be generalized by considering sequences
of Markov matrices or by replacing λ 3− 2 with λ q− 2 for the piecewise-linear models.
This gives the following polynomials for λ :
β -type Misiurewicz point of preperiod q−1 : xq− xq−1−2 = 0 [1]
Primitive center of period q+1 : xq+1−2x−1 = 0
α-type Misiurewicz point of preperiod q : xq = 2
These equations show that h(c) is not Hölder continuous with respect to the external angle
θ as θ → 0, see Section 4.5.

Example 3.3 (Sequences on principal veins)
On the principal vein of the p/q-limb, the β -type Misiurewicz point is approached by
a sequence of centers cn and α-type Misiurewicz points an of increasing periods and
preperiods. The corresponding polynomials for λn are obtained from piecewise-linear
models again, or by considering a sequence of matrices. The polynomial is simplified by
summing a geometric series and multiplying with λ −1:
Center cn of period n≥ q+1 : xn+1− xn−2xn+1−q + x+1 = 0
α-type Misiurewicz point an of preperiod n≥ q : xn+1− xn−2xn+1−q +2 = 0
These polynomials imply monotonicity of λn and give geometric asymptotics by writing
xn+1− xn−2xn+1−q = xn+1−q · (xq− xq−1−2) ; note that the largest root λ0 of the latter
polynomial corresponds to the endpoint of the vein according to Example 3.2:
For cn we have λn ∼ λ0−Kc ·λ−n

0 with Kc =
λ0+1

q−(q−1)/λ0
> 0.

For an we have λn ∼ λ0−Ka ·λ−n
0 with Ka =

2
q−(q−1)/λ0

> 0.
See Proposition 6.2 and Appendix A for a detailed computation and Remark 6.4 for the
relation to Hölder continuity.

Example 3.4 (Sequences on the real axis)
The real axis is the principal vein of the 1/2-limb; setting q = 2 in Example 3.3, dividing
by λ +1 and noting λ0 = 2 at the endpoint c =−2 gives:
cn of period n≥ 3 : xn−2xn−1 +1 = 0 , λn ∼ 2−2 ·2−n

an of preperiod n≥ 2 : xn+1− xn−2xn−1 +2 = 0 , λn ∼ 2− 4
3 ·2

−n

Now consider the α-type Misiurewicz point a2 with the external angle θ = 5/12 and with
λa =

√
2, which is the tip of the satellite Mandelbrot set of period 2. It is approached

from above (with respect to ≺, i.e., from the left) by centers c′n of periods n = 3, 5, 7, . . .
related to the Šharkovskiı̆ ordering. The entropy was computed by Štefan [54], and the
centers of even periods before a2 (to the right) are treated analogously. Again, geometric
asymptotics are obtained from the sequence of polynomials for λ ′n :
c′n of period n = 3, 5, 7, . . . : xn−2xn−2−1 = 0 , λ ′n ∼ λa +

1√
2
·λ−n

a
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c′n of period n = 4, 6, 8, . . . : xn−2xn−2 +1 = 0 , λ ′n ∼ λa− 1√
2
·λ−n

a

Note that for even periods n, the polynomial for λ ′n is imprimitive of index 2, which is
related to the satellite renormalization according to Section 3.3.

Constructing the Hubbard tree Tc from an external angle θ is quite involved [10]. In
[21, 22] an alternative matrix F by Thurston is described, which is obtained from an
external angle without employing the Hubbard tree. Actually, only the kneading sequence
of the angle is required to determine F from the parts of Tc \{0} :

Proposition 3.5 (Alternative matrix by Thurston and Gao)
From a rational angle or from a ∗-periodic or preperiodic kneading sequence, construct
a transition matrix F. The basic vectors represent non-oriented arcs between postcritical
points c j = f j

c (0), j ≥ 1, and [c j , ck] is mapped to [c j+1 , ck+1] by F unless its endpoints
are in different parts of Kc \{0} : then it is mapped to [c1 , c j+1]+ [c1 , ck+1].
Now the largest eigenvalues of the Thurston matrix F and the Markov matrix A coincide.

This combinatorial definition corresponds to the fact that an arc covering z = 0 is mapped
2:1 to an arc at z = c by fc(z). Arcs at c0 are omitted in the preperiodic case, because they
would generate a diagonal 0-block anyway. Note that in general F is considerably larger
than A; it will contain large nilpotent blocks and it may contain additional blocks, which
seem to be cyclic. In the case of β -type Misiurewicz points, a small irreducible block of
F is obtained in Proposition 3.8.3.
Proof: Gao [22] is using a non-square incidence matrix C, which is mapping each arc
to a sum of edges, so AC = CF . Consider the non-negative Frobenius eigenvectors to
obtain equality of the highest eigenvalues: if Fy = λFy then Cy is an eigenvector of A
with eigenvalue λF . The transposed matrices satisfy F ′C′ = C′A′ and if A′x = λAx, then
C′x is an eigenvector of F ′ with eigenvalue λA . (Note that Cy and C′x are not 0, because
C has a non-zero entry in each row and each column.)
As an alternative argument, define a topological space Xc as a union of arcs [c j , ck]⊂Kc ,
which are considered to be disjoint except for common endpoints. There is a natural
projection πc : Xc→ Tc and a lift Fc : Xc→ Xc of fc(z), such that πc is a semi-conjugation
and F is the transition matrix of Fc . Now any z ∈ Tc has a finite fiber π−1

c (z) = {xi} ⊂
Xc and we have the disjoint union

⋃
F−n

c (xi) = π−1
c ( f−n

c (z)). Choosing z such that the
cardinality of f−n

c (z) is growing by λ n
A shows λA ≤ λF . And choosing z such that the

cardinality of F−n
c (x1) is growing by λ n

F gives λF ≤ λA .
Note that F is determined from the kneading sequence of c1 = c, which can be obtained
from the external angle θ as an itinerary. Alternatively, consider a matrix where the basic
vectors represent pairs of angles {2 j−1θ , 2k−1θ} ; it will be the same as F except in the
preperiodic satellite case, where c1 is entering a repelling p-cycle of ray period rp > p.
(This cycle contains the characteristic point of a satellite component before the Misi-
urewicz point c.) The matrix of transitions between pairs of angles will be different from
F , but the largest eigenvalue will be the same: pairs of equivalent angles are permuted
cyclically and correspond to eigenvalues of modulus 1 [22]. Arcs of Xc with at least one
p-periodic endpoint are represented by several pairs of angles, but when a topological
space is built from multiple copies of arcs, it comes with a semi-conjugation to Xc or to
Tc again.
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3.2 Estimates of the core entropy

The edges of the Hubbard tree are connecting the marked points: the critical orbit f n
c (0),

n≥ 0, which includes all endpoints, and additional branch points.

Lemma 3.6 (Modified Markov matrix)
For a postcritically finite fc(z), the Hubbard tree Tc and the associated Markov matrix
A may be changed as follows, without changing the highest eigenvalue λ , and without
changing irreducibility or primitivity (except for item 4 and for c =−1 in item 2):
1. If c is preperiodic, the two edges at z = 0 may be considered as one edge by removing
z = 0 from the marked points; thus an eigenvalue 0 has been removed from A.
2. For c in the 1/2-limb, the unmarked fixed point αc may be marked, splitting one edge
in two. This gives an additional eigenvalue of −1.
3. An unmarked preimage of a marked periodic or preperiodic point may be marked.
4. Extend the Hubbard tree Tc by attaching edges towards the fixed point βc and/or some
of its preimages. This gives additional eigenvalues of 1 and 0, and it makes A reducible.

These modifications may be combined, and item 3 can be applied recursively. The proof
is deferred to Appendix A. Figure 2 gives examples of item 1. Items 2 and 3 are applied
in Section 3.3. Item 4 shows that for a biaccessible parameter c, the Hubbard tree Tc may
be extended in a uniform way for all parameters on the vein. E.g., in the real case we may
replace Tc = [c, fc(c)] with [−βc , βc]. Item 4 is used as well to prove Proposition 6.6.
Note that a matrix with an eigenvalue 0, -1, or 1 will be reduced by a conjugation in
GL(QN), but only permutations are considered for a Frobenius irreducible matrix.

Proposition 3.7 (Monotonicity of core entropy, Penrose and Tao Li)
Core entropy is monotonic: for postcritically finite c≺ c′ we have h(c)≤ h(c′).

Not all parameters are comparable with the partial order ≺ . In particular, many param-
eters c′ are approached by branch points c before them, and parameters c′′ in different
branches are not comparable to c′. — The proof below employs Hubbard trees. Tao Li
[31] used the semi-conjugation from the angle doubling map, see Section 4.2. Penrose had
obtained a more general statement for kneading sequences [44]. See also Proposition 4.6
for monotonicity with respect to external angles.
Proof: The periodic and preperiodic points marked in the Hubbard tree Tc of fc(z) move
holomorphically for parameters in the wake of c. The Hubbard tree Tc′ contains the char-
acteristic point zc′ corresponding to c and the connected hull T ⊂ Tc′ of its orbit is homeo-
morphic to Tc , but the dynamics of fc′(z) is different in a neighborhood of z = 0, which
is mapped behind the characteristic point. There is a forward-invariant Cantor set C ⊂ T
defined by removing preimages of that neighborhood. To obtain the lower estimate of
h(c′), either note that the preimages of a suitable point in C under fc′(z) correspond to
those in Tc under fc(z), or consider a semi-conjugation π from C ⊂ Tc′ to Tc . If c is a
center, hyperbolic arcs in Tc must be collapsed first.
A parameter c∈M is a β -type Misiurewicz point, if f k

c (c) = βc ; the minimal k≥ 1 is the
preperiod. The following results will be needed for Proposition 3.11. The weaker estimate
h(c)≥ log2

k+1 is obtained from Corollary E in [1]; it does not give Proposition 3.11.2.
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Proposition 3.8 (β -type Misiurewicz points)
Suppose c is a β -type Misiurewicz point of preperiod k ≥ 1.
1. The Markov matrix A is irreducible and primitive.
2. The largest eigenvalue satisfies λ k ≥ 2, so h(c)≥ log2

k , with strict inequality for k≥ 2.
3. For the Thurston matrix F according to Proposition 3.5, the arc [c, βc] is generating
an irreducible primitive block B of F, which corresponds to the largest eigenvalue λ .

Proof: Consider the claim that the union
⋃

f j
c ([0, βc]), 1 ≤ j ≤ k, gives the complete

Hubbard tree Tc : we have f 1
c ([−αc , βc]) = [αc , βc] and f j

c ([0,−αc]), 1≤ j≤ k, provides
arcs from αc to all endpoints except βc . When an arc from αc is crossing z = 0, then
either its endpoint is behind −αc and the part before −αc is chopped away before the
next iteration. Or this arc is branching off between 0 and −αc , and further iterates will
be branching from arcs at αc constructed earlier. This proves the claim.
2. Now the arc [0, βc] is containing preimages of itself, so f k

c ([0, βc]) is the Hubbard tree
Tc . Since f k

c (z) is even, every arc of the Hubbard tree has at least two preimages under
f k
c (z) on the spine [−βc , βc]⊂ Tc . Each row of Ak has a sum ≥ 2, so λ k ≥ 2.

1. Every edge e of Tc covers z = 0 in finitely many iterations. Then it is iterated to an
arc at βc , so the edge e contains an arc iterated to [0, βc]. Now f n

c (e) = Tc for n ≥ ne ,
and An is strictly positive for n ≥ max{ne |e ⊂ Tc}, thus A is irreducible and primitive.
(Alternatively, this follows from Lemma 3.9.4, since fc is not renormalizable.) Finally, if
k≥ 2 and we had λ k = 2, the characteristic polynomial of A would contain the irreducible
factor xk−2 and A would be imprimitive.

3. Denote the postcritical points by c j = f j−1
c (c) again. The iteration of any arc is giving

two image arcs frequently, but at least one of these has an endpoint with index j growing
steadily, so reaching βc = ck+1 . Further iterations produce the arc [c, βc] after the other
endpoint was in part A of Kc \ {0}, which happens when it becomes −βc or earlier. So
the forward-invariant subspace generated by [c, βc] corresponds to an irreducible block
B of F . It is primitive by the same arguments as above, since [c, βc] 7→ [c, βc] + [c, c2].
Consider the lift Fc : Xc→ Xc from the proof of Proposition 3.5 and the invariant subset
X ′c corresponding to B. Now πc : X ′c → Tc is surjective, since it maps [c, βc] ⊂ X ′c to
[c, βc]⊂ Tc , and we have λB = λA again. Certainly this block B of F need not be equivalent
to A : for θ = 3/16, A is 7×7 and B is 6×6. And for θ = 3/32, A is 8×8 and B is 9×9.

3.3 Renormalization

A filled Julia set Kc may contain a copy K p
c of another Julia set Kĉ , and the Mandelbrot

set M contains a corresponding copy Mp of itself. According to Douady and Hubbard,
this phenomenon is explained by renormalization: in a suitable neighborhood of K p

c , the
iterate f p

c (z) is quasi-conformally conjugate to fĉ(ẑ). See [14, 15, 25, 39, 48]. Many basic
results are hard to find in the literature; a self-contained exposition will be given in [28].
For a primitive or satellite center cp of period p there is a corresponding tuning map
M →Mp , ĉ 7→ c = cp ∗ ĉ. This notation suggests that the centers are acting on M
as a semigroup. Primitive and satellite renormalization are referred to as simple renor-
malization, in contrast to crossed renormalization [35, 45, 39]. A small Mandelbrot set
Mp is maximal, if it is not contained in another small Mandelbrot set; then it is either
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primitive maximal or generated by a satellite of the main cardioid. We shall need two
non-standard notations: a pure satellite component is not contained in a primitive Man-
delbrot set, but attached to the main cardioid with a series of satellite bifurcations. And a
maximal-primitive small Mandelbrot set is not contained in another primitive one, but it
may be either maximal and primitive or contained in a pure satellite Mandelbrot set.
If cp is primitive and ĉ is postcritically finite, the Hubbard tree for c = cp ∗ ĉ is understood
in this way: visualize the p-periodic marked points in the Hubbard tree of cp as small
disks, which are mapped to the next one 1:1 or 2:1, and replace each disk with a copy of
the Hubbard tree of ĉ. Actually, the latter Hubbard tree is extended to include ±βĉ . The
Markov matrix is obtained in block form as follows, where I denotes an identity matrix:

A =

(
B 0
X R

)
with R =


0 0 0 · · · Â

I 0 0 . . . 0

0 I 0 . . . 0
... . . . . . . . . . 0
0 0 0 I 0

 (3)

Lemma 3.9 (Renormalization and Markov matrices)
1. Suppose c = cp ∗ ĉ for a postcritically finite parameter ĉ 6= 0. In particular, cp is a
center of period p≥ 2 and a suitable restriction of f p

c (z) is conjugate to fĉ(ẑ) . Then the
edges of the Hubbard tree can be labeled such that the Markov matrix A has the block
form (3). Here R is imprimitive and Â is the Markov matrix of ĉ. Moreover:
a) If cp is a primitive center or ĉ is not a β -type Misiurewicz point, then B is the Markov
matrix of cp .
b) If cp is a satellite of c′p and ĉ is of β -type, then B belongs to c′p . It is missing completely
for immediate satellite renormalization with c′p = 0.

2. In all cases of simple renormalization, we have h(c) = max
{

h(cp) ,
1
p h(ĉ)

}
.

3. Suppose fc(z) is crossed renormalizable of immediate type and a suitable restriction of
f p
c (z) is conjugate to fĉ(ẑ) . Then its Markov matrix A is imprimitive and it can be given

the form A = R from (3). Here Â is the Markov matrix of ĉ, with αĉ added to the marked
points if necessary, so h(c) = 1

p h(ĉ) .

4. If the Markov matrix A of fc(z) is reducible or imprimitive, then fc(z) is simply or
crossed renormalizable with ĉ 6= 0, or c is an immediate satellite center.

In the preperiodic case, fc(z) is topologically transitive on the Hubbard tree Tc , if A is
irreducible, and total transitivity corresponds to a primitive matrix. In this context, results
similar to items 1 and 4 have been obtained in [1]. However, it is assumed that the small
Hubbard trees are disjoint only in the case of primitive renormalization. But fc(z) is not
transitive in the pure satellite case either, except in the immediate satellite case with ĉ of
β -type. — In real dynamics, the relation of imprimitivity and renormalization is classic.
Item 2 is found in [38, 17] for real unimodal maps, in [31] for postcritically finite complex
polynomials, and in [60] for arbitrary parameters on veins.
Proof of Lemma 3.9: Note that for c = cp and ĉ = 0, the map fc(z) is p-renormalizable
as well, but the small Hubbard tree is reduced to a point and R is empty. On the other
hand, items 1–3 do not require p to be the maximal non-trivial renormalization period.
Likewise, the proof of item 4 will not produce that period in general.
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1. The Julia set of fcp(z) contains both a superattracting orbit of period p and a char-
acteristic point of period dividing p. By tuning, the superattracting basins are replaced
with a p-cycle of small Julia sets, which are attached to the characteristic point and its
images. These sets are mapped homeomorphically to the next one; only the small Julia
set at z = 0 is mapped 2:1 to the set at z = c. The I-blocks in R represent the homeomor-
phic restrictions of f 1

c (z), and the diagonal block Â in Rp corresponds to f p
c (z) and fĉ(ẑ).

Except in the β -type case of ĉ, the edges of the Hubbard tree for fcp(z) are extended into
the small Julia sets, ending at marked points of the small Hubbard trees, which are before
those corresponding ±βĉ . This extension does not happen in the case of a β -type Misi-
urewicz point ĉ, because the β -fixed point of the small Hubbard tree coincides with the
characteristic point corresponding to cp . In the satellite case, this means that the edges
from the characteristic point to the p-periodic points are lost completely; only edges from
the Hubbard tree of c′p are represented in B. Note that in the preperiodic case, we must
join the edges at z = 0 according to Lemma 3.6.1; otherwise the block R will be more
involved.
2. The characteristic polynomials satisfy χA(x) = χB(x) · χR(x) = χB(x) · χÂ(x

p). For
the second equality, consider a complex eigenvector in block form to see that x is an
eigenvalue of R if and only if xp is an eigenvalue of Â. Now the largest eigenvalue of B is
related to h(cp) and the largest eigenvalue of R corresponds to 1

p h(ĉ). When B represents
c′p instead of cp , first apply the same argument to show h(c′p) = h(cp).
3. The p-cycle of small Julia sets is mapped p−1 times homeomorphically and once like
f p
c (z) and fĉ(ẑ) as above. Since they are crossing at the fixed point αc , αĉ is marked in the

Hubbard tree determining the block Â. If ĉ belongs to the 1/2-limb and is not of α-type,
this point would not be marked in the minimal Hubbard tree of fĉ(ẑ), but doing so does
not change the largest eigenvalue according to Lemma 3.6.2. There are no further edges
in the Hubbard tree of fc(z).
4. Since fc(z) is expanding on the Hubbard tree Tc , every edge will cover the edge ec

before z = c under the iteration. So the images f j
c (ec) form an absorbing invariant family

of edges, and there is a corresponding irreducible block R in A. If A is reducible, R is not
all of A, and the corresponding subset of Tc has p ≥ 2 connected components: if it was
connected, it would be all of Tc . By surjectivity, each of these components is mapped
onto another one. Each component is forming a small tree, and collapsing all components
to points gives a p-periodic tree.
If A is irreducible and imprimitive of index p, it has a Frobenius normal form with a block
structure similar to R in (3), except the non-0 blocks need not be quadratic. So the family
of edges is a disjoint union of E1 , . . . , Ep with fc : E j → E j+1 , Ep → E1 . There is a
corresponding subdivision of the Hubbard tree into p subsets; these are disjoint except for
common vertices, and we do not need to show that they are connected. Since every subset
is mapped into itself under kp iterations only, every edge has return numbers divisible by
p. Every characteristic periodic point has a ray period divisible by p. If c is not satellite
renormalizable, the preperiodic critical value c or the primitive characteristic point z1 is
approached from below by primitive characteristic points xn of minimal periods, which
are increasing and divisible by p. Thus for large n, the internal address of xn will be
ending on . . .–Per(xn−1)–Per(xn), so xn is p-renormalizable according to [10]. The same
applies to c, since that renormalization locus is closed.
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Remark 3.10 (Same entropy for different Hubbard trees)
1. For any postcritically finite parameter not on the real axis, there are corresponding
parameters with a homeomorphic Hubbard tree, but different rotation numbers at periodic
branch points [10]. These parameters have the same core entropy: neither the Markov
matrix A nor the Thurston matrix F according to Proposition 3.5 depends on the rotation
numbers. The dynamics of these parameters are conjugate by homeomorphisms, which
are not orientation-preserving [10].
2. Suppose p, q ≥ 2 and ĉ is a postcritically finite parameter in the 1/q-limb. Consider
the following parameters, whose p-renormalization is conjugate to fĉ(ẑ) : c is satellite
renormalizable in the 1/p-limb, and c′ is immediately crossed renormalizable in the 1

pq -
limb. Then h(c) = h(c′) although the dynamics are not conjugate globally. If q≥ 3 and ĉ
is of β -type, the Markov matrices for the minimal Hubbard trees are identical in fact.
3. The Misiurewicz parameter c = γM(3/14) has a few remarkable properties. The char-
acteristic polynomial of F is P(x) = x4− 3x− 2 = (x2− x− 1) · (x2 + x+ 2) and A has
x ·P(x). This factorization is non-trivial, i.e., not involving roots of unity. Moreover,
the first factor agrees for the primitive Mandelbrot set of period 3: the core entropy is
h(c3) = h(c) but the dynamics are unrelated. Kc is discussed in [5, 18] in a different
context: fc(z) on Kc is quasi-conformally conjugate to a piecewise-affine map ±sx− 1
with s3− s2 + s+2 = 0.

Proposition 3.11 (Renormalization and entropy)
Suppose c = cp ∗ ĉ for a postcritically finite parameter ĉ.

1. If the center cp is of pure satellite type, we have h(cp) = 0 and h(c) = 1
p h(ĉ) .

2. If cp is a primitive center and c = cp ∗ ĉ, then h(c) = h(cp)>
log2

p .
3. Consider a maximal-primitive small Mandelbrot set Mp = cp ∗M as defined above,
and denote its tip by c′p = cp ∗ (−2). There is a sequence of Misiurewicz points an→ c′p
on the vein behind c′p , such that h(an)> h(c′p) = h(cp) .

Item 2 means that h(c) is constant on primitive Mandelbrot sets, see also Theorem 4.7.
This fact will simplify various proofs in Section 4. Item 3 shows that the monotonicity
from Proposition 3.7 is strict, when c and c′ are separated by a maximal-primitive Man-
delbrot set. According to [47], two postcritically finite parameters are separated by a root.
Now there is a maximal-primitive root as well, unless both parameters are of pure satellite
type or belong to the same primitive Mandelbrot set.
Proof of Proposition 3.11: 1. Suppose c is an immediate satellite center of the main
cardioid, then the Hubbard tree is a star with an endpoint at z = 0, so fc(z) is injective on
it. Moreover, the characteristic polynomial of A is xp− 1 when p ≥ 3. Both arguments
give h(c) = 0. For a pure satellite center cp = ck ∗ . . .∗c1 , apply Lemma 3.9.2 recursively
to show h(cp) = 0. The same relation gives h(cp ∗ ĉ) = 1

p h(ĉ) .
2. Suppose that cp is not pure satellite renormalizable. There is an immediate satel-
lite cq of period q and a β -type Misiurewicz point bk of preperiod k, such that cp is
behind the α-type Misiurewicz point cq ∗ bk . By the estimate of lowest periods in dec-
orations [28] we have p ≥ (k− 1)q+(q+ 1) = kq+ 1. Monotonicity and the estimate
from Proposition 3.8.2 give h(cp)≥ h(cq ∗bk) =

1
q h(bk)≥ 1

q
log2

k > log2
p . More generally,

if cp = cs ∗ cq with cs pure satellite type of period s and cq of period q primitive and not
pure satellite renormalizable, then h(cp) =

1
s h(cq)>

1
s

log2
q = log2

p again. Finally, for any
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postcritically finite parameter ĉ we have h(cp ∗ ĉ) = max
{

h(cp) ,
1
p h(ĉ)

}
= h(cp) , since

1
p h(ĉ)≤ log2

p < h(cp) .
3. Suppose that cp is primitive and maximal, not pure satellite renormalizable. For c= an ,
the critical value is behind the disconnected small Julia set. After p iterations it will be
before the characteristic point, following its orbit but moving farther away with every p-
cycle of iterations. After pn± k iterations it will join a repelling cycle independent of
n. Misiurewicz points with these properties are constructed to describe the domains of
renormalization [28]; in the maximal case we may use α-type Misiurewicz points. Fixing
any large n, set c = an+1 and c′ = an � c� c′p . We shall see that h(c′)> h(c).
The relevant preperiodic points exist in both Julia sets, as does the p-cycle of disconnected
small Julia sets. The edges shall be corresponding as follows: first, the edges leading to
the postcritical points behind the small Julia sets in Tc and Tc′ are identified. Second,
preperiodic marked points of Tc between the small Julia sets are marked in Tc′ in addition
to the postcritical points; by Lemma 3.6.3 this does not change the largest eigenvalue λ ′ of
A′. Due to the identifications, the only difference of A and A′ is related to a small edge at
the first interior postcritical point: it has one preimage under A and two preimages under
A′. Since A is primitive by Lemma 3.9.4, and A′ ≥ A in each component, we have λ ′ > λ

according to Section 2.4. Finally, if cp is maximal-primitive but not primitive maximal,
the Misiurewicz points will belong to the same pure satellite Mandelbrot set cs ∗M , and
the inequalities for ân are transferred to an = cs ∗ ân according to h(an) =

1
s h(ân).

Item 2 and Lemma 3.9 show that a postcritically finite parameter c 6= 0 has the following
property, if and only if it is neither pure satellite renormalizable nor immediately crossed
renormalizable: the largest eigenvalue λ of A is simple, and there is no other eigenvalue
of the same modulus. — Suppose cp has the internal address 1–. . .–s–q–. . .–p, where s
is of pure satellite type and q is primitive, then item 2 is strengthened by monotonicity to
h(cp)>

log2
q . The estimate h(cp)≥ log2

q is due to Bruin–Schleicher [11]; equality can be
ruled out by Lemma 3.9.4 as well, since cq is not q-renormalizable with ĉ 6= 0.

3.4 Biaccessibility dimension of postcritically finite maps

When c is a Misiurewicz point, the filled Julia set Kc is a countable union of arcs between
periodic and preperiodic points, plus an uncountable union of accumulation points. The
interior points of the arcs are pinching points, so they are biaccessible: there are at least
two dynamic rays landing. Each of these points is iterated to the Hubbard tree in a finite
number of steps. When c is a center, the arcs of the Hubbard tree and their preimages are
meeting a dense family of Fatou basins each. For a pure satellite center, these basins have
a countable family of common boundary points and accumulation points on an arc, so the
biaccessible points in ∂Kc are countable. When c is a primitive center, or a satellite center
within a primitive Mandelbrot set, the primitive small Julia sets do not have common
boundary points, and there is an uncountable family of biaccessible accumulation points
on every arc. In any case, a countable union of linear preimages shows that the Hausdorff
dimension of biaccessing angles of rays is the same for the Hubbard tree Tc and for ∂Kc .
It is related to the core entropy h(c) as follows:

Proposition 3.12 (Hausdorff dimension and Hausdorff measure)
1. Suppose fc(z) is postcritically finite and consider the subset K ′

c ⊂Kc of biaccessible
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points. The Hausdorff dimension of biaccessing angles is related to the core entropy by
b := dimγ−1

c (K ′
c ) = dimγ−1

c (Tc) = h(c)/ log2 according to Thurston [36, 21, 11, 60].
2. When the biaccessibility dimension is 0 < b≤ 1, the Hausdorff measure of the external
angles of the Hubbard tree satisfies 0 < µb(γ

−1
c (Tc))< ∞. Taking all biaccessing angles

of Kc , we have µb(γ
−1
c (K ′

c )) = ∞ when 0 < b < 1.

The Thurston relation h(c) = b · log2 will be proved in Section 4.2 under more general
assumptions, using the fact that γc : γ−1

c (Tc) ⊂ S1 → Tc ∩ ∂Kc is a semi-conjugation
from the angle doubling map F(ϕ) to fc(z) ; this proof from [11, 60] has no essential
simplification in the postcritically finite case. The following alternative argument is based
on Hausdorff measure, and it gives a partial answer to a question in [36, Remark 1.1].
Proof: There is a finite number of intervals in S1, such that γ−1

c (Tc) is obtained by remov-
ing these intervals and their preimages recursively [17, 31, 60]. Since fc(z) is even and
fc : Tc→ Tc is surjective but not 2 : 1 globally (unless c =−2), these intervals correspond
to the components of (−Tc)\Tc : if a component is attached at a pinching point in ∂Kc ,
the interval of angles is obvious. If the cut point of a component is a superattracting pe-
riodic point, the interval is determined from the repelling periodic point on the boundary
of the Fatou basin. E.g., for the primitive center c of period 4 in the 1/3-limb, the initial
intervals are (9/14, 11/14) and (12/15, 1/15) in cyclic order.
Removing preimages up to order n can be described in terms of an equidistant subdivision:
there are xn closed intervals Wj of length C2−n left, where C is related to the common
denominator of the initial intervals. We shall see that xn is bounded above and below as
xn � λ n when h(c) = logλ > 0, and obtain the Hausdorff dimension from λ . The basic
idea is to consider preimages of the cut points in Tc , since preimages in other parts of
Kc are removed together with another branch. After a few initial steps, the preimages
are preperiodic and their number equals the number of preimages of certain edges. The
decomposition of A from Lemma 3.9 shows that this number is growing by λ ; although
certain edges have fewer preimages in the case of pure satellite renormalization, these do
not contain initial cut points. Now the remaining intervals have total length xnC2−n given
by the tails of geometric series (or their derivatives) in the halved eigenvalues of A. So
xn ∼ Kλ n asymptotically when λ corresponds to a primitive block of A and xn � λ n in
general, since λ > 1 when pure satellite centers are excluded.
The equidistant covering of γ−1

c (Tc) by xn intervals Wj of length C2−n gives the
box dimension b = logλ/ log2 = h(c)/ log2 and an upper estimate µb(γ

−1
c (Tc)) ≤

limsupxn(C2−n)b < ∞ when b > 0 according to the definition (2). Since γ−1
c (Tc) is closed

and invariant under doubling F(ϕ) = 2ϕ , the Hausdorff dimension dimγ−1
c (Tc) = b is

obtained from Furstenberg [20, Proposition III.1]. We shall use similar arguments to
show µb(γ

−1
c (Tc)) > 0, following the exposition by Gao [22, Section 5.2.1]. Using an

equidistant subdivision W ′j of length 2−n still gives ∑ |W ′j |b � λ n2−bn � 1. Assuming
µb(γ

−1
c (Tc)) = 0, there is a finite cover by closed intervals with |Ui| = 2−ni , aligned to

the dyadic grids of different levels ni , such that ∑ |Ui|b < 1. Define puzzle pieces by tak-
ing preimages under Fni restricted to Ui : by F-invariance there are nested puzzle pieces
around the points of γ−1

c (Tc). The pieces of depth k contribute (∑ |Ui|b)k to (2). For large
n, each W ′j will be contained in a puzzle piece of large depth k, but our estimates do not
give a contradiction yet: there may be several W ′j in the same piece. So, set N = maxni

and choose a puzzle piece of maximal level ∑ni for each W ′j . By induction, the level will
be ≥ n−N, since images under Fni still have maximal levels. Now there are at most 2N
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of the W ′j contained in one piece, the depth is k ≥ n/N−1, and

1�∑
j
|W ′j |b ≤ 2N

∞

∑
k∼n/N

(
∑

i
|Ui|b

)k
→ 0 as n→ ∞ . (4)

This is a contradiction disproving the assumption µb(γ
−1
c (Tc)) = 0. When b < 1, an arc

in (−Tc)\Tc 6= /0 has disjoint preimages. In each step, their number is doubled and their
individual measure is divided by 2b < 2, giving µb(γ

−1
c (K ′

c )) = ∞.
For the principal α-type Misiurewicz point c in the p/q-limb, the angles of an edge of Tc
are obtained explicitly: on each side, we have a standard Cantor set, where an interval is
divided into 2q pieces recursively and the outer two intervals are kept. So for b = 1/q, the
sum in (2) is independent of the levels of subdivision.

4 The biaccessibility dimension

A filled Julia set Kc , or the Mandelbrot set M , is locally connected if and only
if every external ray lands and the landing point depends continuously on the angle
(Carathéodory). Some possible scenarios are shown in Figure 3. It may happen that a
pair of rays is approximated by pairs of rays landing together, without doing the same.
Therefore we must distinguish between combinatorial biaccessibility and topological bi-
accessibility. However, every pinching point z ∈Kc , i.e., Kc \{z} is disconnected, must
be the landing point of at least two rays [35, p. 85]. Non-local connectivity of M would
mean that M contains non-trivial fibers; these compact connected subsets are preimages
of points under the projection πM : ∂M → S1/∼ of [16] described in Section 4.5. As an
alternative characterization, these subsets cannot be disconnected by pinching points with
rational angles [47] (and they are disjoint from closed hyperbolic components). There is
an analogous concept for Julia sets, but rational angles do not suffice to describe fibers of
Julia sets for Siegel and Cremer parameters [48].

a) b) c) d)

Figure 3: Possible scenarios at the Feigenbaum parameter cF ∈M ∩R: in a) M is openly locally
connected at cF , and the fiber of cF is non-trivial in the other cases [16, 47]. It is formed from the
impressions of two rays. In case d) the rays do not land; they have non-trivial accumulation sets.
This example could be modified, such that the impressions are larger than the accumulation sets.
Note that in cases b) and d), M \{cF} is not disconnected.
Similar situations arise for combinatorially biaccessing dynamic rays of a filled Julia set Kc , but
they need not be symmetric. — Non-trivial fibers may correspond to a single external ray as well.
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4.1 Combinatorial and topological biaccessibility

For a given angle θ , the itinerary of ϕ is a sequence of symbols A, B, ∗ or 1, 0, ∗ describ-
ing the orbit of ϕ under doubling with respect to a partition of the circle, which is defined
by the diameter joining θ/2 and (θ +1)/2 . See [26, 49, 10]. The following result from
[10, Section 9] motivates the definition of combinatorial biaccessibility by itineraries:

Lemma 4.1 (Rays landing together, Bruin–Schleicher)
Assume that Kc is locally connected and for some θ ∈ S1, Rc(θ) lands at the critical
value c, or θ is a characteristic angle of z1 at the Fatou basin around c.
Suppose the rays Rc(ϕ1) and Rc(ϕ2) do not land at preimages of c or z1 . Then they land
together, if and only if the itineraries of ϕ1 and ϕ2 with respect to θ are equal.

Proof: A separation line is formed by the rays Rc(θ/2) and Rc((θ +1)/2) together with
the common landing point z= 0; in the parabolic or hyperbolic case, there are two landing
points connected with an interior arc. The itinerary of an angle with respect to θ is equal
to the itinerary of the landing point with respect to the separation line, since preimages
of c or z1 are excluded. So if the landing point is the same, the itineraries coincide. Now
suppose the landing points wi of Rc(ϕi) are different: we need to show that w1 and w2
are separated by a preimage of z = 0. In the case of empty interior, the arc [w1 , w2]
is containing two biaccessible points w′1 , w′2 , which satisfy f n

c ([w
′
1 , w′2]) ⊂ [−βc , βc].

The subarc covers 0 in finitely many steps, since otherwise the corresponding intervals
of angles could be doubled indefinitely. If the interior of Kc is not empty, the arc is
not defined uniquely in interior components, but an image of the subarc must cross the
component around z = 0 for the same reason.
So the biaccessibility dimension will be the same for all external angles of c. If Kc is not
locally connected, there may be pairs of rays approximated by pairs landing together, but
not doing so themselves; this may look like the parameter space picture b) or d) in Fig-
ure 3, or be more complicated. With countably many exceptions, the criterion in terms of
itineraries shows, which rays should land together according to the combinatorics. When
θ is not periodic, for any word w angles with the itineraries w ∗ ν , wAν , and wBν have
rays landing together as well. Here ν denotes the kneading sequence, i.e., the itinerary of
θ with respect to itself. If θ is periodic, you cannot see from the itinerary alone whether
two angles belong to the same preimage of z1 . Again, the ambiguity concerns a countable
number of angles only; it does not matter for the Hausdorff dimension:

Definition 4.2 (Biaccessibility dimension)
1. With respect to an angle θ ∈ S1, ϕ1 is combinatorially biaccessing, if there is an angle
ϕ2 6= ϕ1 such that ϕ1 and ϕ2 are connected by a leaf of the lamination associated to θ

[56]. With countably many exceptions, this means that ϕ1 and ϕ2 have the same itinerary,
which does not contain an ∗. The Hausdorff dimension of these angles is the combinatorial
biaccessibility dimension Bcomb(θ).
2. For c ∈M , an angle ϕ1 ∈ S1 is topologically biaccessing, if there is an angle ϕ2 6= ϕ1
such that Rc(ϕ1) and Rc(ϕ2) land at the same pinching point z ∈Kc . The Hausdorff
dimension of these angles is the topological biaccessibility dimension Btop(c).

The following result is basically due to Bruin and Schleicher; see the partial results in [10,
Section 9] and the announcement in [11]. The proof below will discuss the dynamics of
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various cases; some arguments could be replaced by the geometric observation, that the
angles of non-landing rays have Hausdorff dimension 0, see the references in [11].

Theorem 4.3 (Combinatorial and topological biaccessibility)
Suppose that θ ∈ S1 and c ∈ ∂M belongs to the impression of RM(θ), or c ∈M is
hyperbolic and the ray lands at the corresponding root. Then Bcomb(θ) = Btop(c).

Recall the notions of maximal-primitive renormalization and of pure satellite components
from Section 3.3. When fc(z) is simply p-renormalizable, there is a small Julia set K p

c ⊂
Kc and f p

c (z) is conjugate to fĉ(ẑ) in a neighborhood; the hybrid-equivalence ψc(z) is
mapping K p

c →Kĉ . Now Kc \K p
c consists of a countable family of decorations, which

are attached at preimages of the small β -fixed point. Each decoration corresponds to
an open interval of angles, and their recursive removal shows that the angles of rays
accumulating or landing at ∂K p

c form a Cantor set of Hausdorff dimension 1/p and finite
positive Hausdorff measure [34, 28]. The parameter c belongs to a small Mandelbrot set
Mp ⊂M , which has corresponding decorations and the same Cantor set of angles, such
that the parameter ray lands or accumulates at ∂Mp . The Douady substitution of binary
digits [15, 34] relates the external angles ϕ and ϕ̂: if Rc(ϕ) lands at z ∈ ∂Kc , then
ψc(Rc(ϕ)) lands at ẑ = ψc(z) ∈ ∂Kĉ and according to Liouville, Rĉ(ϕ̂) lands at ẑ as
well. The converse statement is not obvious, because ψ−1

c (Rĉ(ϕ̂)) may cut through the
decorations. But when the “tubing” is chosen appropriately, Rĉ(ϕ̂) can be deformed such
that it is avoiding the images of decorations, still landing at ẑ. The same arguments apply
to parameter rays [28].
Proof of Theorem 4.3: The problem is that Kc may be non-locally connected; then
two rays with the same kneading sequence may land at different points of a non-trivial
fiber, or one may accumulate there without landing. Cf. Figure 3. By the Yoccoz Theo-
rem [39, 25], non-local connectivity can happen only for infinitely simply renormalizable
parameters c, or for fc(z) with a neutral cycle. Consider the following cases:
1. If fc(z) is hyperbolic or parabolic, Kc is locally connected and θ is an external angle of
the characteristic point [40, 49]. If fc(z) is non-renormalizable or finitely renormalizable
with all cycles repelling, Kc is locally connected and Rc(θ) lands at the critical value:
both for the dynamic plane and the parameter plane, θ is approximated by corresponding
rational angles [47, 48, 49]. The statement follows from Lemma 4.1.
2. If Kc contains a Siegel disk or a Cremer point of period 1, we have Btop(c) = 0 [64].
If c is a Siegel or Cremer parameter on the boundary of a pure satellite component, there
are countably many biaccessing angles from the satellite bifurcations. Each copy of the
small Julia set has biaccessing angles of Hausdorff dimension 0, since the renormalized
rays would land at Kĉ . On the other hand, Bcomb(θ) = 0 according to [13, 11]. For an
irrationally neutral parameter in a primitive Mandelbrot set, the biaccessibility dimension
will be positive; these parameters are included in case 4.
3. Suppose the parameter c is infinitely pure satellite renormalizable. Choose a pure
satellite component of period m before c and consider the angles of the rays accumulating
or landing at the small Julia set and its preimages. Their Hausdorff dimension is 1

m ; so
Btop(c) ≤ 1

m and Bcomb(θ) ≤ 1
m , and letting m→ ∞ gives 0. All other infinitely renormal-

izable parameters are contained in a primitive Mandelbrot set.
4. Suppose c = cp ∗ ĉ for a primitive center cp of period p, and denote the angles of
the corresponding root by θ± . Since RM(θ) lands or accumulates at Mp = cp ∗M , θ
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belongs to the Cantor set of angles constructed above and Rc(θ) accumulates or lands at
K p

c . We will not need to check, whether it accumulates at the critical value z = c. By
item 1, Proposition 3.11.2, and the relation to core entropy from Proposition 3.12.1, we
have Btop(cp) = Bcomb(θ±)>

1
p . But 1

p is the Hausdorff dimension of those angles, whose
rays land or accumulate at the small Julia sets, so these are negligible. Every biaccessible
point z ∈Kcp is iterated to the spine [−βcp , βcp], and the angles of the spine alone have
Hausdorff dimension Btop(cp) already. This arc consists of a Cantor set of biaccessing
points (except for ±βcp) and a countable family of interior arcs.
Each Fatou component on the spine defines a strip bounded by four dynamic rays, which
are moving holomorphically for all parameters in the wake of Mp by the composition
of Böttcher conjugations. This holomorphic motion is extended according to the Słod-
kowsky Theorem [50]. Neglecting branch points, the biaccessing rays of the Cantor set
are approximated by strips from both sides, so their motion is determined uniquely. The
moved ray is still a dynamic ray of the new polynomial, and it is still biaccessing. On the
other hand, a pair of topologically biaccessing rays for the parameter c ∈Mp is iterated
to a pair separating −βc from βc . Neglecting pairs separating small Julia sets, this pair
belongs to the moving Cantor set. Thus Btop(c) = Btop(cp), and Bcomb(θ) = Bcomb(θ±) is
shown analogously, observing that Rc(θ/2) and Rc((θ +1)/2) belong to the strip around
the small Julia set at z = 0.

4.2 Core entropy revisited

According to [36, 21], the following relation is due to Thurston. The proof follows Bruin–
Schleicher [11] and Tiozzo [60]. See also the partial results by Douady [17].

Theorem 4.4 (Thurston, Bruin–Schleicher, Tiozzo)
Suppose Kc is locally connected with empty interior, or fc is parabolic or hyperbolic with
a real multiplier. Using regulated arcs, define the tree Tc as the path-connected hull of the
critical orbit. If Tc is compact, define the core entropy h(c) as the topological entropy of
fc on Tc . Then it is related to the biaccessibility dimension by h(c) = Btop(c) · log2.

Proof: First, assume that Kc has empty interior. According to Douady [16, p. 449],
every biaccessible point z ∈ Kc has an image separating −βc from βc : when two of
its external angles differ in the n-th binary digit, f n−1

c (z) has external angles in (0, 1/2)
and in (1/2 , 1). It will be iterated to the arc of Tc through z = 0 in finitely many steps.
Conversely, every external angle of Tc ⊂Kc is biaccessing, with at most countably many
exceptions. Setting Xc = γ−1

c (Tc) and considering a countable union of linear preimages
shows Btop(c) = dimXc . Now Xc is forward invariant under the doubling map F(ϕ) = 2ϕ ,
which has constant slope 2. So log2 ·dimXc = htop(F, Xc) by [20, Proposition III.1]. But
γc : Xc → Tc is a semi-conjugation from F(ϕ) to fc(z), so htop(F, Xc) = htop( fc , Tc) =
h(c). Note that by the Bowen Theorem [8, 37], it is sufficient that every point z ∈ Tc
has finitely many preimages under γc , but this number need not be bounded globally.
Here every branch point with more than four branches is periodic or preperiodic by the
No-wandering-triangles Theorem [56], and periodic points in ∂Kc are repelling. So this
condition will be satisfied, even if there are infinitely many branch points.
If fc(z) is hyperbolic or parabolic, γc(Xc) = Tc ∩ ∂Kc will be a disconnected subset of
Tc . To see that htop( fc , Tc∩ ∂Kc) = htop( fc , Tc) in the maximal-primitive case of period

20



p, the estimate h(c)> log2
p from Proposition 3.11.2 shows again that the interior does not

contribute more to the entropy. In the pure satellite case, the number of preimages under
f n
c (z) is not growing exponentially on Tc , so h(c) = 0.

Similar techniques show that the set of biaccessing pairs (ϕ1 , ϕ2) ∈ S1×S1 has the same
Hausdorff dimension [22]. In the postcritically finite case, results on Hausdorff measure
are found in Proposition 3.12. Thurston [57] has suggested to define a core Tc ⊂Kc for
every c ∈M as “the minimal closed and connected forward-invariant subset containing
[the critical point], to which the Julia set retracts.” Consider the following cases:

• If c is parabolic or hyperbolic of period p, the critical orbit is connected with arcs
from z to f p

c (z), but Tc will not be unique. If Kc contains a locally connected Siegel
disk D of period 1, the core is D . For a p-cycle of locally connected Siegel disks,
Tc contains arcs through preimages of these disks in addition.

• In the fixed Cremer case and in the infinitely pure satellite renormalizable case,
the following situation may arise according to Douady and Sørensen [52, 53]: the
rays Rc(θ/2) and Rc((θ +1)/2) each accumulate at a continuum containing both
αc and −αc . Kc is neither locally connected nor arcwise connected. The core
according to the above definition may be too large, even all of Kc . The same
problem applies to Cremer cycles of pure satellite type, and possibly to the non-
locally connected Siegel case.

• In the primitive renormalizable case, we have htop( fc , Tc) = Btop(c) · log2 for a fairly
arbitrary choice of Tc . Even if the small Julia set K p

c is an indecomposable con-
tinuum, we may include complete preimages of it in Tc , because Btop(c)> 1/p.

• Suppose Kc is locally connected with empty interior, but the arcwise connected
hull of the critical orbit is not compact. Then it is not clear, whether taking the
closure of Tc may produce an entropy htop(Tc)> Btop(c) · log2.

Remark 4.5 (Locally connected model and non-compact core)
1. For any parameter angle θ , Bruin–Schleicher [11, version 1] consider the set Xθ of
angles ϕ that are either postcritical or combinatorially biaccessing and before a postcrit-
ical angle. In the cases where Kc has empty interior and is not of Cremer type, this set
corresponds to a tree Tθ within a locally connected model of Kc , which is a quotient of S1

or of a space of itineraries. Now htop( f , Tθ ) = htop(F, Xθ ) = Bcomb(θ) · log2 may be shown
using a generalized notion of topological entropy when Tθ is not compact. It would be
interesting to know whether the entropy on the closure can be larger, and whether Tθ can
be embedded into Kc in the infinitely renormalizable case; probably this will not work in
the situation of [53] described above.
2. Suppose the binary expansion of θ is a concatenation of all finite words. Then the orbit
of θ under doubling is dense in S1. The parameter c is not renormalizable and not in the
closed main cardioid, so Kc is locally connected with empty interior. Since the critical
orbit is dense in Kc , the tree Tθ corresponds to a non-compact union Tc of a countable
family of arcs in Kc . Now Btop(c) = dimγ−1

c (Tc)< 1 = htop(Tc)/ log2 shows that the gen-
eralized topological entropy satisfies dimγ−1

c (Tc) 6= htop(Tc)/ log2 or htop(Tc)< htop(Tc).
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4.3 Monotonicity, level sets, and renormalization

Monotonicity of the biaccessibility dimension (or core entropy) has been shown by Pen-
rose [44] for abstract kneading sequences and by Tao Li [31] for postcritically finite poly-
nomials, cf. Proposition 3.7. In terms of angles it reads as follows:

Proposition 4.6 (Monotonicity of laminations, folklore)
Suppose θ− < θ+ are such that for some parameter c, the corresponding dynamic rays
land together at the critical value c, or θ± are characteristic angles at z1 . If an angle
ϕ is combinatorially biaccessing with respect to θ± , it stays biaccessing for all angles
θ ∈ (θ− , θ+). In particular we have Bcomb(θ)≥ Bcomb(θ±).

The assumption may be restated in terms of laminations of the disk [56] as follows: θ±
belong to a leaf or a polygonal gap of the quadratic minor lamination QML. If c is a
branch point, we may assume that θ± bound the whole wake. Their preimages divide
the circle into four arcs; the preimages of θ are contained in I0 = (θ−/2 , θ+/2) and I1 =
((θ−+1)/2 , (θ++1)/2). Consider the set B⊂ S1 of angles combinatorially biaccessing
with respect to θ± , and the subset U ⊂ B of biaccessing angles ϕ that are never iterated
to I0∪ I1 under doubling F(ϕ) = 2ϕ . For each ϕ ∈U the itinerary with respect to θ− is
the same as the itinerary with respect to θ+ . Now B is the union of iterated preimages
of U and Bcomb(θ±) := dimB = dimU . To see this, we may assume that c belongs to a
vein according to Proposition 4.8; otherwise c would have a non-trivial fiber intersecting
a vein and it should be moved there. Then Kc is locally connected, the beginning of the
critical orbit is defining a finite tree Tc ⊂Kc , and every biaccessible point is iterated to
Tc∩ ∂Kc . Moreover, Tc does not have external angles in I0∪ I1 , since no z ∈ Tc∩ ∂Kc
is iterated behind c or z1 . So both U and B are iterated to γ−1

c (Tc∩ ∂Kc). Variations of
the following argument where used by Douady [17] in the real case, by Tao Li [31] in the
postcritically finite case, and by Tan Lei for veins [60, Proposition 14.6].

a) b) c)

Figure 4: The pattern of rays landing together can be described by a lamination of the disk
[56]. As θ is varied, the diameter defined by θ/2 and (θ + 1)/2 is moving and disconnecting
or reconnecting chords. The closed lamination is describing combinatorially biaccessing pairs of
angles; the corresponding rays need not land together if Kc is non-locally connected.

Proof of Proposition 4.6: The itinerary of any pair ϕ1 ,ϕ2 ∈ U remains the same for
all angles θ ∈ (θ− , θ+), so ϕ1 and ϕ2 remain biaccessing. Their preimages in B remain
biaccessing as well. As an alternative argument, consider the possible change of partners
for ϕ ∈ B according to Figure 4: since ϕ is iterated through I0∪ I1 and (θ− , θ+) a finite
number of times, it has a finite number of possible itineraries with respect to θ ∈ (θ− , θ+).
Now ϕ is changing the partner when θ is an iterate of ϕ or conjugate to an iterate of ϕ .
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The partners remain faithful on the finite number of remaining intervals for θ , since their
itineraries do not change there.
So, what kind of bifurcation is changing the biaccessibility dimension? The bifurcation
of rational rays at a root is known explicitly, but it does not affect the dimension. The
periodic pairs stay the same for parameters in the wake, while preperiodic and irrational
pairs may be regrouping. Now the dimension is changed only when an uncountable family
of irrational angles is gaining or losing partners. The bifurcations should be studied for
real parameters first: with ‖ϕ‖ := min{ϕ, 1−ϕ}, and real c = γM(θ), the external angles
ϕ of the Hubbard tree [c, fc(c)] are characterized by ‖Fn(ϕ)‖ ≤ ‖θ‖ for all n ≥ 0. All
biaccessible angles satisfy ‖Fn(ϕ)‖ ≤ ‖θ‖ for n ≥ Nϕ . E.g., ϕ = 0.010010001 . . . is
biaccessible for c =−2 = γM(1/2) but not for any other real parameter.
Suppose cn↗ c0 with Btop(cn) strictly increasing. Denote the sets of biaccessing angles
by Bn and B0 . Consider the union B− =

⋃
Bn and the newly biaccessible angles B+ =

B0 \B− . Then it will be hard to prove dimBn→ dimB0 by estimating dimB+ , since we
have dimB− = limdimBn ≤ dimB0 = dimB+ in general. The last equality is obtained by
considering the Hausdorff measure for b = dimB0 : now dimBn < b gives µb(B−) = 0,
but µb(B0)> 0 according to Proposition 3.12.
For pure satellite renormalization, the relation Btop(c) = 1

p Btop(ĉ) from Proposition 3.11.1
extends to all parameters ĉ ∈M by the Douady substitution of binary digits [15, 28],
since the covering intervals of length 2−np correspond to intervals of length 2−n. The
scaling implies that Btop(c)→ 0 = Btop(c0) for a pure satellite Feigenbaum point c0 and
c↘ c0 on the vein behind it. Consider primitive renormalization:

Theorem 4.7 (Strict monotonicity and primitive Mandelbrot sets)
1. The topological biaccessibility dimension is Btop(−2) = 1 and Btop(c) = 0 for parame-
ters c in the closed main cardioid, in closed pure satellite components, and for infinitely
pure satellite renormalizable parameters. We have 0 < Btop(c)< 1 for all other c ∈M .
2. For c ≺ c′ we have Btop(c) ≤ Btop(c′). When Btop(c′) > 0, the inequality is strict unless
c and c′ belong to the same primitive Mandelbrot set.
3. The biaccessibility dimension Btop(c) is constant on every primitive Mandelbrot set
Mp = cp ∗M . Every connected component of a level set {c ∈M |Btop(c) = b > 0} is
either a maximal-primitive Mandelbrot set or a single point.
4. For the primitive M4 ⊂M1/3 there is a sequence of parameters cn ∈M \M4 con-
verging to the root of M4 , such that Btop(cn) = Btop(M4).
There is a sequence of parameters cn ∈M \ {i} converging to the non-renormalizable
Misiurewicz point c = i, such that Btop(cn) = Btop(i).

Analogous statements hold for Bcomb(θ). When Btop(c) is restricted to a vein, items 1–
3 imply that it is constant before a Feigenbaum point, and on any arc corresponding to
a primitive small Mandelbrot set. For principal veins this was shown independently by
Tiozzo [60]. See also the historical remarks after Theorem 4.9.
Proof of Theorem 4.7:
1. Btop(−2) = 1 is obtained from K−2 = [−2, 2] or from the 1×1-Markov matrix A= (2).
The pure satellite case was discussed in the proof of Theorem 4.3. In the remaining cases,
Btop(c)> 0 follows from Proposition 3.11.2 and monotonicity, or from the estimate L2 in
[11]. See [67, 51, 10, 36, 11] for Btop(c)< 1.
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2. There are angles θ− ≤ θ ≤ θ+ , such that θ± are external angles of c and RM(θ)
accumulates or lands at c′, or at the corresponding root, or at a small Mandelbrot set
around the fiber of c′. The monotonicity statement of Proposition 4.6 is transferred to
the parameter plane. Under the additional assumptions, the parameters are separated by a
maximal-primitive Mandelbrot set [47], and Proposition 3.11.3 gives strict monotonicity.
3. On a primitive Mandelbrot set, the biaccessibility dimension is constant by the proof
of Theorem 4.3. The components of M \Mp are attached to Mp at the root and at
Misiurewicz points. If Mp is maximal in the family of primitive Mandelbrot sets, these
points are approached by smaller maximal-primitive Mandelbrot sets, so Btop(c) is strictly
larger behind the Misiurewicz points. For the same reason, it is strictly smaller on the vein
before the root, but not necessarily on branches at the vein, see item 4. If Btop(c)> 0 and
c is not primitive renormalizable, then it is at most finitely renormalizable with all cycles
repelling, so its fiber is trivial by the Yoccoz Theorem. It can be separated from any other
parameter by a maximal-primitive Mandelbrot set again.
4. Denote the root by c∗ in the first case, and c∗ = i in the second case. Define an as the
sequence of α-type Misiurewicz points of lowest orders before c∗ , then Btop(an)<Btop(c∗)
by item 2. In the other branch of an , the β -type Misiurewicz point of lowest order satisfies
Btop(bn±1) > Btop(c∗) by Examples 6.5 and 6.3, respectively. Continuity on the vein to
bn±1 according to Theorem 4.9 provides a parameter cn on the arc from an to bn±1 with
Btop(cn) = Btop(c∗).

Figure 5: The graph of λ (θ) representing Bcomb(θ) on intervals containing [3/7 , 25/56] and
[3/15 , 49/240], which are corresponding to one decorated side of the primitive Mandelbrot sets
M3 and M4 . Note that in both cases, p-renormalizable angles are on the same level and most of
the interval represents the 1/3-limb. There seems to be a left-sided maximum at 3/7 but not at
3/15. In both cases there is a similarity between the various sublimbs; see Figure 7 for M4 . In
the case of M3 , the symmetry of the 1/2-limb seems to be transferred to other sublimbs.

4.4 Entropy and biaccessibility on veins

Summarizing some classical results:
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Proposition 4.8 (The tree of veins, folklore)
1. Every β -type Misiurewicz point is connected to 0 by a unique regulated arc within M .
These arcs form an infinite tree; its branch points are Misiurewicz points and centers. The
tree is the disjoint union of veins, such that veins of higher preperiods branch off from a
vein of lower preperiod.
2. Every biaccessible parameter belongs to a vein, and the corresponding dynamic rays
land at the critical value or at the characteristic point. Hyperbolicity is dense on every
vein.
3. For every parameter c on a vein, Kc is locally connected and the regulated path-
connected hull Tc of the critical orbit is a finite tree. We have Tc ⊂ T̃c , where the tree T̃c
is homeomorphic to the Hubbard tree of the β -type endpoint of the vein.

Note that it is not known, whether M is locally connected on a vein; this is open for
Feigenbaum points in particular. The vein has a linear order ≺ extending the partial order
of M to interior parameters and to possible non-accessible boundary points.
Proof: 1. The veins were described by Douady–Hubbard in terms of the partial order
≺ in a locally connected Model of M [16]. To see that they are topological arcs, note
that any non-trivial fiber would be infinitely renormalizable according to Yoccoz [25]; but
a vein meets a small Mandelbrot set in a quasi-conformal image of a real interval, plus
finitely many internal rays in satellite components. This argument is due to Kahn [16, 48],
and homeomorphisms from intervals onto complete veins are due to Branner–Douady and
Riedl [9, 46]. By the Branch Theorem [47, 56], the tree branches at Misiurewicz points
with finitely many branches and at centers with countably many internal rays leading to
sublimbs. There is a unique branch of lowest preperiod, since any open interval contains a
unique dyadic angle of smallest denominator. By this order, the decomposition into veins
is well-defined: the branch of lowest order is continued before the branch point.
2. If c is a biaccessible parameter, it is on the vein to the β -type Misiurewicz point of
lowest preperiod in its wake, which corresponds to the dyadic angle of lowest preperiod
in an interval. Hyperbolicity is dense on the real axis according to Graczyk–Swia̧tek
and Lyubich [23, 33], so possible non-trivial fibers can meet it in a single point only,
as illustrated in Figure 3. Triviality of fibers is preserved under tuning [48], so all non-
hyperbolic parameters on a vein are roots or separated by roots, and approximated by
hyperbolic arcs. The approximation by roots shows in addition, that c or z1 has the same
characteristic angles as the parameter, employing the approximation by corresponding
characteristic points and local connectivity of Kc from item 3. — Suppose that c ∈M
and the critical value c ∈Kc is biaccessible. It is not known whether this implies that c
belongs to a vein of M ; otherwise c belongs to a non-trivial fiber crossing the candidate
vein.
3. The Julia sets of real polynomials are locally connected according to Levin–van Strien
[30]. If Kc was not locally connected, it would be infinitely simply renormalizable and
obtained by tuning from a real parameter; but local connectivity would be carried over
according to Schleicher [48]. Consider the tree T̃c of regulated arcs in Kc connecting the
orbit of a preimage of βc corresponding to the endpoint of the vein. The beginning of the
critical orbit gives the endpoints of Tc by the same arguments as for postcritically finite
Hubbard trees. T̃c is forward invariant and contains the critical value z = c according to
item 2, thus the entire critical orbit, so Tc ⊂ T̃c. The tree T̃c bifurcates only at parameters
on veins of lower order (and not at the origin of a non-principal vein). The topological
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entropy on Tc and T̃c is the same; for postcritically finite dynamics this is Lemma 3.6.4,
and the general case is obtained from a recursion for the number of preimages of z = 0 on
T̃c \Tc .

Theorem 4.9 (Biaccessibility and entropy on veins of M , generalizing Tiozzo)
On any vein v of M , we have:
1. The Hubbard tree Tc is a finite tree for c ∈ v, thus compact, and the core entropy
satisfies htop( fc , Tc) = h(c) = Btop(c) · log2.
2. It is 0 on an arc through pure satellite components, constant on the arcs corresponding
to maximal-primitive Mandelbrot sets, and strictly increasing otherwise.
3. The core entropy h(c) and biaccessibility dimension Btop(c) are continuous on v.
4. The Hausdorff dimension of biaccessing parameter angles of v before c equals Btop(c).

Item 1 is obtained from Proposition 4.8.3 and Theorem 4.4, and item 2 follows from
Theorem 4.7. Continuity is proved below. See Proposition 5.1 for item 4. Tiozzo [60]
has obtained these results for principal veins with different methods, e.g., combinatorics
of dominant parameters, piecewise-linear maps on trees, and a kneading determinant.
Probably continuity can be proved with the approach of Bruin–Schleicher [11] as well.
The real interval [−2, 0] is the principal vein of the 1/2-limb. Here Milnor–Thurston [38]
constructed a semi-conjugacy from fc(z) to a tent map and showed that the topological
entropy depends continuously and monotonically on the kneading invariant. Later the
Douady map ΦM(c) := Φc(c) implied monotonicity with respect to the parameter c, by
relating the symbolic description to the external angle of c [17]. An alternative proof is
due to Tsujii [62, 41].
The following proofs are based on continuity results for the entropy of tree endomor-
phisms. Now the Hubbard tree Tc or T̃c is homeomorphic to a linear tree and fc(z) is
conjugate to a tree map, but it would be difficult to control parameter dependence of the
homeomorphisms. Instead only one polynomial is transferred to a linear tree and per-
turbed continuously there; combinatorics relates postcritically finite maps back to poly-
nomials. The second proof is motivated by the idea of [17] for real polynomials, but it
needs deeper results on tree endomorphisms than the first one.
First proof of continuity on veins: The core entropy is constant on closed arcs corre-
sponding to small Mandelbrot sets of maximal-primitive type. If the origin of the vein v
is a pure satellite center, then h(c) is 0 on a closed arc meeting pure satellite components,
and it is continuous at the corresponding Feigenbaum point by tuning. Since h(c) is mono-
tonic, we need to show that it does not jump. Suppose c0 is behind the Feigenbaum point
and not primitive renormalizable. Then c0 has trivial fiber [47] and is not a satellite root, so
it is approximated monotonically from below by Misiurewicz points cn . In the Hubbard
tree Tc0 ⊂ Kc0 denote the characteristic point corresponding to cn by zn , then zn → z0
from below. Now the tree Tc0 is homeomorphic to a tree consisting of line segments,
with a map g0(x) conjugate to fc0(z) and points xn corresponding to zn . Choose x′n with
xn−1 � x′n ≺ xn , such that the orbit of xn does not return to (x′n , x0], and define a sequence
of continous maps ηn(x) with ηn : [x′n , x0]→ [x′n , xn] monotonically and ηn(x) = x for x
before x′n , such that gn = g0 ◦ηn→ g0 uniformly. Then liminfhtop(gn)≥ htop(g0) = h(c0)
according to [32]. But gn(x) is postcritically finite with the same order of the critical or-
bit as fcn(z), which implies htop(gn) = h(cn) since lap numbers of iterates are determined
by itineraries on the tree. By monotonicity we have limsuph(cn) ≤ h(c0). So there is
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no jump of h(c) for c→ c0 from below. The construction of gn(x) needs to be modified
when c0 is a maximal-primitive root, since z0 is strictly before the critical value c0 : all
arcs through Fatou basins are squeezed to points first. (By Proposition 3.11.2, this does
not change the core entropy.)
Now suppose c0 is behind the Feigenbaum point and either a maximal-primitive tip or
not primitive renormalizable, so h(c0) = logλ0 > 0. According to [2], λ0 is the growth
rate of lap numbers, lim 1

n logL( f n
c0
) = h(c0). For λ > λ0 there is an N with L( f n

c0
) ≤ λ n

when n ≥ N. Lap numbers are changing at postcritically finite parameters in v only,
since the existence and the linear order of endpoints of laps is determined from their
itineraries. So there is a one-sided neighborhood U = [c0 , c′) ⊂ v with c′ � c0 , such
that the lap number L( f n

c ) is constant for c ∈U when n ≤ N. Since each fc(z) on Tc is
conjugate to a tree endomorphism, its entropy is related to the growth of lap numbers.
Now these are sub-multiplicative, so L( f kN

c ) ≤ [L( f N
c )]k ≤ λ kN and letting k→ ∞ gives

logλ0 = h(c0) ≤ h(c) ≤ logλ . This shows continuity of h(c) for c→ c0 from above by
taking λ ↘ λ0 .
On the real vein, continuity was proved by different methods in [38, 42, 17]. The typical
counterexample to continuity involves a change of the lap number L(g1) or a modification
of a 0-entropy map with a periodic kink. According to [42, 2], a continuous piecewise-
monotonic interval map g0(x) has the following properties under a C0-perturbation g(x)
respecting the lap number: the topological entropy is lower semi-continuous for g→ g0
and it can jump at most to q

p log2, if g0(x) has a p-cycle containing q critical points.
Continuity is obtained when htop(g0)≥ q

p log2 already, or from C2-convergence.
These results were generalized to non-flat piecewise monotonic-continuous maps in [43].
The highest possible jump is bounded by limsuphtop(g)≤max(htop(g0) , logλ ), where λ

is the highest eigenvalue of the transition matrix describing the orbits of critical points
and points of discontinuity, as long as these are mapped to each other in a finite number
of iterations. By concatenating the edges, any continuous tree map can be described by a
piecewise continuous interval map; if the topological entropy is discontinuous, the bound
λ is related to the orbits of critical points and branch points. For quadratic polynomials,
the critical point is never a periodic branch point, and a cycle of branch points gives λ = 1.
By Proposition 3.11.2, a center has h(cp)>

1
p log2 unless it is of pure satellite type. So:

Suppose g0(x) is an endomorphism of a finite linear tree T with htop(g0) > 0, which is
topologically conjugate to a quadratic polynomial fc(z) on Tc . Then htop(g)→ htop(g0)
when g→ g0 uniformly, where the maps g1 have the same lap number as g1

0 on T .
Second proof of continuity on veins: Assume that the monotonic core entropy h(c) has
a jump discontinuity on the vein v, omitting an interval (h0 , h1). Again by tuning, an
initial pure satellite Feigenbaum point has h(cF)< h0. Choose Misiurewicz points c0 ≺ c1
on v with 0 < h(c0) ≤ h0 < h1 ≤ h(c1). Now fc1(z) on Tc1 is topologically conjugate to
an endomorphism g1(x) on a tree consisting of line segments. It contains the orbit of a
preperiodic characteristic point corresponding to c0 , so there is a continuous family gt(x),
0 ≤ t ≤ 1, on the linear tree with g0(x) representing the combinatorics of c0 . gt(x) shall
have the same critical point as g1(x). By the adaptation of [43] above, the topological
entropy of gt(x) could be discontinuous only when the critical point is p-periodic and
htop(gt)<

1
p log2; there would be a center c∈ v with the same order of the critical orbit [10]

and h(c)> 1
p log2. So there are 0≤ t0 < t1 ≤ 1 with htop(gti) = hi . Since the topological

entropy on the tree is determined by the growth rate of lap numbers according to [2],
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and lap numbers are changing only at postcritically finite parameters, there is a t with
t0 < t < t1 and h0 < htop(gt)< h1 , such that gt(x) is postcritically finite. Again, the critical
orbit is defining an oriented Hubbard tree and there is a unique quadratic polynomial fc(z)
with the same dynamics. The parameter c with c0≺ c≺ c1 and h0 < h(c)< h1 contradicts
the assumed jump discontinuity.
The proofs did not use the semi-conjugation from fc(z) to a piecewise-linear map of
slope λ [4]. An alternative proof might be given recursively by showing that the set
of admissible λ is connected for a particular shape of the tree. For principal veins, the
piecewise-linear model was described explicitly in terms of external angles [60].

4.5 Continuity with respect to the angle and the parameter

Monotonicity and continuity of the core entropy on veins implies:

Proposition 4.10 (Partial results on continuity)
1. The biaccessibility dimension Btop(c) is continuous on the union of regulated arcs
connecting a finite number of postcritically finite parameters within M .
2. Suppose that θ0 ∈ S1 and c0 ∈ ∂M belongs to the impression of RM(θ0). Assume
that c0 is biaccessible, postcritically finite, simply renormalizable, or in the closed main
cardioid. Then the biaccessibility dimension is lower semi-continuous as θ → θ0 or as
c→ c0 : we have liminfBcomb(θ)≥ Bcomb(θ0) and liminfBtop(c)≥ Btop(c0).

Proof: 1. Continuity on veins was shown in Section 4.4. If a postcritically finite param-
eter is not on a vein, it is a Misiurewicz point of period > 1 with one external angle, and
M is openly locally connected at this point. So an arc consisting of a countable family of
subsets of veins ends at this parameter. Items 2 and 3 of Proposition 4.8 remain true for
this arc, and the proofs of continuity are transferred.
2. If c0 is renormalizable and not a primitive root, there is a biaccessible c1 ≺ c0
with Btop(c0) = Btop(c1). Monotonicity gives Btop(c) ≥ Btop(c0) for c � c1 , which is a
neighborhood of c0 . If c0 is a primitive root, a postcritically finite endpoint, or a non-
renormalizable biaccessible parameter with Btop(c0)> 0, there is a sequence of parameters
an↗ c0 with Btop(an)↗ Btop(c0). Now c→ c0 implies that c� an with n→ ∞.
According to [10] the biaccessibility of an angle ϕ1 can be seen by comparing its itinerary
to the kneading sequence, without knowing the second angle ϕ2 : every branch of Kc at
the landing point is characterized by an eventually unique sequence of closest precritical
points. This approach was used in version 1 of [11] to obtain Hölder continuity with
respect to the kneading sequence ν by estimating the number of words appearing in the
itineraries of biaccessing angles. However, the proof is currently under revision:

Conjecture 4.11 (Continuity on S1, Thurston and Bruin–Schleicher)
The combinatorial biaccessibility dimension Bcomb(θ) is continuous on S1. Moreover,
when θ0 ∈Q and Bcomb(θ0)> 0, it is Hölder continuous at θ0 with exponent Bcomb(θ0) .

To transfer Hölder continuity from ν to θ , consider the intervals of angles θ where the
first N entries of ν(θ) are constant: when θ0 is rational, they do not shrink to θ0 faster
than ∼ 2−N . The Hölder exponent may become smaller for irrational θ0 . And Bcomb(θ)
is not Hölder continuous at, e.g., the root at θ0 = 0: denote by θn = 2−n the dyadic angle

28



of lowest preperiod in the limb of rotation number 1/(n+1). According to Example 3.2,
we have Bcomb(θn) = logλn/ log2 with λn→ 1 and (λn)

n = 2/(λn−1)→ ∞.
Consider the Feigenbaum point cF = −1.401155189 of pure satellite period doubling. It
is approximated by real Misiurewicz points or centers ck of preperiod and period � 2k

and Bcomb(θk) = Btop(ck) � 2−k [54], since the tuning map ĉ 7→ (−1) ∗ ĉ is halving the
dimension. Repeated Douady substitution gives log(θk− θF)

−1 � 2k, so Bcomb(θ) is not
Hölder continuous at θF [60]. Since cF− ck � δ−k

F with δF = 4.669201609, Btop(c) is
Hölder continuous on the real axis at cF with exponent log2/ logδF = 0.449806966. Note
that the biaccessibility dimension on a sequence of angles or parameters gives upper and
lower bounds on a particular vein due to monotonicity, but only the lower bound applies
to branches of the vein as well. The bounds at the 0-entropy locus in [11] are not restricted
to veins.

Theorem 4.12 (Continuity on M )
ASSUMING CONJECTURE 4.11, THAT Bcomb(θ) IS CONTINUOUS ON S1 :
The topological biaccessibility dimension Btop(c) is continuous on M .

This implication was obtained independently by Bruin–Schleicher. Two different proofs
shall be discussed here: the first one considers similar cases as in the proof of Theo-
rem 4.3. The second one will be shorter but more abstract. See version 2 of [11] for an
alternative argument based on compactness of fibers [47, 48].
First proof of Theorem 4.12: According to Theorem 4.3, Btop(c) is determined from
Bcomb(θ) when c ∈ ∂M is in the impression of RM(θ). By the proof of that Theorem,
Btop(c) is constant on the closures of interior components, since they belong to a primitive
Mandelbrot set or they are pure satellite renormalizable (non-hyperbolic components be-
long to non-trivial fibers [16, 47], so they are infinitely renormalizable). Now Bcomb(θ) is
continuous on a compact domain by assumption, so it is uniformly continuous.
1. Suppose c ∈ ∂M is non-renormalizable or finitely renormalizable. According to Yoc-
coz [25], the fiber of c is trivial; there is a sequence of open neighborhoods shrinking to
c, which are bounded by parts of periodic rays, equipotential lines, and arcs within hyper-
bolic components. More specifically:
a) If c is not on the boundary of a hyperbolic component, M \ {c} has finitely many
branches, and c is approximated by separating roots on every branch; their external rays
are connected with equipotential lines.
b) If c is a Siegel or Cremer parameter, or the root of the main cardioid, use two external
rays landing at different satellite roots, an equipotential line, and an arc within the com-
ponent.
c) If c is a satellite bifurcation point, apply this construction symmetrically for both com-
ponents.
d) If c is a primitive root, combine b) for the component and a) for the vein before it.
The rays and equipotential lines are used to visualize a bounded open neighborhood in C;
the relatively open neighborhood in M is determined by pinching points and interior arcs.
When cn→ c, the neighborhoods can be chosen such that the angles of the rays converge
to external angles of c, so Btop(cn)→ Btop(c).
2. Suppose c ∈ ∂M is infinitely pure satellite renormalizable. It is characterized by a
sequence of pure satellite components, each one bifurcating from the previous one, with
periods pk→ ∞ and external angles θ

−
k ↗ θ− and θ

+
k ↘ θ+ . There are two cases [28]:

a) If pk+1 = 2pk for k ≥ K, c belongs to the fiber of a tuned Feigenbaum point: we have
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θ− < θ+ and a sequence of roots with external angles θ̃
−
k ↘ θ− and θ̃

+
k ↗ θ+ . When

cn→ c, there are angles θn with Btop(cn) = Bcomb(θn) and θn ∈ [θ−kn
, θ̃
−
kn
] or θn ∈ [θ̃+

kn
, θ

+
kn
].

Now kn→ ∞, so Btop(cn)→ 0 = Btop(c).
b) If pk+1 ≥ 3pk for infinitely many values of k, we have θ− = θ+ and M does not
continue beyond the fiber of c. When cn→ c, there are angles θn with Btop(cn) = Bcomb(θn)
and θn ∈ [θ−kn

, θ
+
kn
] with kn→ ∞, so Btop(cn)→ 0 = Btop(c) again.

3. Suppose c ∈ ∂M is infinitely renormalizable and belongs to a primitive Mandelbrot
set Mp . When cn→ c, cn ∈M \Mp , these points belong to decorations of order tending
to ∞, since there are only finitely many decorations of any bounded order, and these
have a positive distance to c. By the Douady substitution, or the recursive construction
of decorations, the corresponding intervals of angles tend to length 0. Since Bcomb(θ)
is uniformly continuous, and constant on the angles of rays bounding the decorations,
we have Btop(cn)→ Btop(Mp). Note that we do not need to show that the connecting
Misiurewicz points tend to c.
There is a closed equivalence relation on S1, such that θ1 ∼ θ2 if the corresponding pa-
rameter rays land together or their impressions form the same fiber. (The latter situation
would be a tuned image of the real case sketched in Figure 3, so both rays land or none
does.) Now S1/∼ is a locally connected Hausdorff space, which is the boundary of the
abstract Mandelbrot set [16, 47]. The natural projection πS : S1→ S1/∼ is continuous. By
collapsing non-trivial fibers, a continuous projection πM : ∂M → S1/∼ is obtained. (In
Figure 3, it would map any of the latter configurations to the first one.)
Second proof of Theorem 4.12: Now there is a factorization Bcomb = B ◦πS with a con-
tinuous map B : S1/∼→ [0, 1], since θ1 ∼ θ2 implies Bcomb(θ1) = Bcomb(θ2): Siegel and
Cremer parameters are not biaccessible; parameter rays with non-trivial impressions be-
long to infinitely renormalizable fibers, and Bcomb(θ) is constant on the corresponding
angles; and M is locally connected at the remaining parameters c, as is Kc at c. By The-
orem 4.3 and assuming Conjecture 4.11 we have Btop = B ◦πM on ∂M as a composition
of continuous maps. The interior of M is treated as in the first proof above.

5 Biaccessibility of the Mandelbrot set

For the Mandelbrot set, topological biaccessibility is defined by parameter rays landing
together. Combinatorial biaccessibility is obtained from the equivalence relation defin-
ing the abstract Mandelbrot set S1/∼ [16, 56]; a pair of angles approximated by pairs
of equivalent periodic angles is equivalent as well, and the angles are combinatorially
biaccessing. The rays may fail to land together as illustrated in Figure 3. By the Yoc-
coz Theorem [25], this can happen only for infinitely renormalizable angles, which are
negligible in terms of Hausdorff dimension [34]. Zakeri [65, 66] has shown that the bi-
accessing angles of M or M ∩R have Hausdorff dimension 1 and Lebesgue measure 0.
According to Bruin–Schleicher [10, 11], the dimension is < 1 when a neighborhood of
c =−2 or θ = 1/2 is excluded.

Proposition 5.1 (Biaccessibility dimension of arcs of M , generalizing Tiozzo)
Suppose c′ ≺ c′′ do not belong to the same primitive Mandelbrot set; c′′ is biaccessible or
of β -type. Consider the external angles of the regulated arc [c′, c′′]⊂M . Their Hausdorff
dimension is related to the dynamic one by dimγ−1

M [c′, c′′] = Btop(c′′).
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Proof: 1. Suppose that c′′ is a non-renormalizable Misiurewicz point. To obtain
dimγ−1

M [c′, c′′] ≤ Btop(c′′), note that γ−1
M [c′, c′′] ⊂ γ

−1
c′′ [αc′′ , c′′] : any biaccessible param-

eter c ∈ [c′, c′′] is either a satellite root or approximated by roots, and there are corre-
sponding characteristic points in [αc′′ , c′′] ; their limit is biaccessible since Kc′′ is locally
connected.
To show dimγ−1

M [c′, c′′]≥Btop(c′′), choose non-renormalizable Misiurewicz points cn with
c′ � cn ≺ c′′ such that cn ↗ c′′, and such that the preperiodic point z′′c corresponding to
c′′ moves holomorphically for c in the wake of c1 . Due to non-renormalizability, the
Hubbard tree for cn is covered by iterates of the arc [cn , z′′cn

]⊂Kcn , and the related maps
of angles are piecewise-linear, so dimγ−1

cn
[cn , z′′cn

] = Btop(cn). We have dimγ−1
M [c′, c′′] ≥

dimγ−1
M [cn, c′′] ≥ Btop(cn), since the angles of [cn , z′′cn

] ⊂Kcn remain biaccessing for pa-
rameters c� cn according to Proposition 4.6; assuming that the corresponding parameter
rays do not land at [cn , c′′] ⊂M gives a contradiction at least for angles that are not
infinitely renormalizable. The proof is completed by limBtop(cn) = Btop(c′′).
2. Suppose that c′′ is a non-renormalizable parameter and approximate it with non-
renormalizable Misiurewicz points c′ ≺ c′′n ≺ c′′. Then we have [c′, c′′) =

⋃
[c′, c′′n] and

dimγ−1
M [c′, c′′] = limdimγ−1

M [c′, c′′n] = limBtop(c′′n) = Btop(c′′) by monotonicity and conti-
nuity according to Theorem 4.9.
3. Suppose c′′ is primitive renormalizable but not pure satellite renormalizable, so it
belongs to a maximal primitive Mandelbrot set of period p. The argument of case 2
applies to the corresponding root c′′∗ as well. We have dimγ−1

M [c′, c′′] = dimγ−1
M [c′, c′′∗] =

Btop(c′′∗) = Btop(c′′) since dimγ−1
M [c′′∗, c′′]≤ 1

p < Btop(c′′∗) by Proposition 3.11.2.

4. Suppose c′′ belongs to a pure satellite Mandelbrot set of maximal period p. By ne-
glecting finitely many angles, we may assume that c′ is p-renormalizable as well. The
proof of cases 1–3 can be copied, noting that now the iterates of [cn , z′′cn

]⊂Kcn cover the
small Hubbard tree; in the pure satellite case the biaccessibility dimension is dominated
by the small Julia set according to Btop(c) = 1

p Btop(ĉ). On the other hand, the statement
will be false when c′, c′′ belong to the same primitive Mandelbrot set of period p : then
dimγ−1

M [c′, c′′]≤ 1
p < Btop(c′′).

More generally, c′′ may be an endpoint with trivial fiber, by approximating it with bi-
accessible parameters [48]. Tiozzo [60] has obtained Proposition 5.1 with his proof of
continuity on principal veins. The following result relates the local biaccessibility dimen-
sion of M to the dynamic one. Common upper and lower estimates for both quantities
have been determined combinatorially for c→−2 in [10, 11] and at the 0-entropy locus
in [11].

Theorem 5.2 (Biaccessibility dimension of pieces of M )
ASSUMING CONJECTURE 4.11, THAT Bcomb(θ) IS CONTINUOUS ON S1 :
1. Define a closed piece P ⊂M by disconnecting M at finitely many pinching points.
Then the biaccessible parameters P ′ have dimγ−1

M (P ′) = max{Btop(c) |c ∈P}.
2. Suppose c ∈M is a parameter with trivial fiber, not belonging to the closure of a
hyperbolic component. For any sequence of nested pieces Pn with

⋂
Pn = {c} we have

limdimγ−1
M (P ′

n) = Btop(c).

Proof: Intersecting P with the tree of veins according to Proposition 4.8 gives a count-
able family of full veins and finitely many truncated veins; these arcs A contain all biac-
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cessible parameters, and truncated veins within a primitive Mandelbrot set are negligible.
By Proposition 5.1 we have dimγ−1

M (P ′) = supdimγ−1
M (A )≤max{Btop(c) |c ∈P}. On

the other hand, this maximum is attained at a parameter c0 ∈ ∂M ∩P approximated
by the β -type endpoints of veins An ⊂P , so dimγ−1

M (P ′) ≥ limsupdimγ−1
M (An) =

Btop(c0) = max{Btop(c) |c ∈P}. Item 2 is immediate from item 1 and continuity.

6 Asymptotic self-similarity and local maxima
of the biaccessibility dimension

The biaccessibility dimension Bcomb(θ) shows Hölder asymptotics at rational angles θ0 for
specific sequences θn→ θ0 . The same techniques give partial results towards the Tiozzo
Conjecture [60]. A self-similarity of Bcomb(θ) for θ → θ0 was considered by Tan Lei and
Thurston [21]; the geometric sequences suggest a possible scaling factor.

6.1 Hölder asymptotics

The following example describes sequences converging to a β -type Misiurewicz point.
See Figure 1 for related zooms of Bcomb(θ).

Example 6.1 (Asymptotics at θ0 = 1/4)
a = γM(1/4) is the principal β -type Misiurewicz point in the 1/3-limb. It is approached
by the sequences cn and an on the vein according to Example 3.3. Btop(cn) or Btop(an) is
given by logλn/ log2, where λn is the largest root of the polynomial below:
Center cn of lowest period n≥ 4 : xn−2 · (x3− x2−2)+(x+1) = 0
α-type Misiurewicz point an of preperiod n≥ 3 : xn−2 · (x3− x2−2)+2 = 0
In the other branch at an−1 , there is a β -type Misiurewicz point bn of preperiod n ≥ 4 :
xn−2 · (x3− x2−2)+2(x−1) = 0
These polynomials are obtained in Appendix A. They imply λn < λ0 and give geometric
asymptotics λn ∼ λ0−K ·λ−n

0 with K > 0 in the three cases. Here Btop(a) = Bcomb(1/4) is
determined from λ0 , which satisfies x3− x2−2 = 0.

For any β -type Misiurewicz point a, fa(z) maps the arc [−αa ,βa]→ [αa ,βa] and this
defines sequences of preimages of 0 and αa , respectively, approaching βa monotonically.
There are corresponding sequences of centers cn and α-type Misiurewicz points an ap-
proaching a. Their critical orbit is described as follows [29]: it stays close to the orbit of
the distinguished preimage of βc until it is close to βc , and then it moves monotonically
on [αc ,βc] until it meets 0 or αc . The latter steps are increased with n, while the first part
of the orbit is combinatorially independent of n.

Proposition 6.2 (Asymptotics at angles of Misiurewicz points)
A β -type Misiurewicz point a is approached monotonically by a sequence of centers cn
with period n on the vein before it, such that there is no lower period behind cn . The core
entropy converges geometrically: h(cn) ∼ h(a)−K ·λ−n

0 with K > 0 and h(a) = logλ0 .
The same result holds for a sequence of α-type Misiurewicz points an of preperiod n.

Proof: For large n, choose n′ = n−n0 edges on [αc ,βc] mapped monotonically, such that
they are covered by the image of a unique edge. Label them such that the former edges
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are 1 . . .n′ and the latter edge is the last one. The Markov matrix An has the characteristic
matrix An−xI in (5), where the off-diagonal blocks are 0 except for the last column each.
The top left block has dimension n′ and the lower right block is independent of n, as is
the last column of the lower left block. (These blocks are different for cn and an .)

An− xI =



−x 1

1 . . . ...
. . . . . . ...

. . . . . . ...
1 −x 1
∗
... B− xI
∗


(5)

The characteristic polynomial is obtained by Laplace expansion of the determinant with
upper n′× n′ minors and complementary lower minors. There are only two non-zero
contributions; taking the first n′ columns for the upper minor gives (−x)n′ and taking the
first n′−1 columns plus the last one gives ±(1+ x+ . . .+ xn′−1), so

±det(An− xI) = xn′ · P̃(x)+ xn′−1
x−1

Q̃(x) , (6)

taking care of the relative signs. This polynomial is multiplied with xn0(x− 1) and re-
grouped, and the largest common factor is determined. So we have h(cn) = logλn or
h(an) = logλn , respectively, where λn is the largest root of an equation

R(x) ·
(

xn ·P(x)−Q(x)
)
= 0 . (7)

Here P(x) is monic and P(x) and Q(x) do not have common roots. By monotonicity
and continuity on the vein according to Theorem 4.9 we have λn ↗ λ0 , so the roots of
R(x) have modulus < λ0 and they are negligible at least for large n. Then λ n

n → ∞ gives
P(λ0) = 0 6=Q(λ0). Now λ0 is a simple root of P(x) and the largest in modulus; otherwise
for large n, (7) would have a root larger than λ0 or a small circle of such roots around λ0 .
Rewriting this equation for λn and performing a fixed point iteration according to the
Banach Contraction Mapping Principle gives

x = λ0 +Q(x)
x−λ0

P(x)
x−n and λn = λ0 +

Q(λ0)

P′(λ0)
·λ−n

0 +O(nλ
−2n
0 ) . (8)

The logarithm provides a corresponding asymptotic formula for logλn .
The following example shows that the phenomenon is not limited to β -type Misiurewicz
points, see Figure 6. The higher period of a means that the period of cn and the preperiod
of an grows in steps of 2:

Example 6.3 (Asymptotics at θ0 = 1/6)
a = i = γM(1/4) is a Misiurewicz point of preperiod 1 and period 2 in the 1/3-limb of
M . It is approached by the sequences cn and an of lowest periods or preperiods on the
arc before a. λn is the largest root of the following polynomial:
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Center cn of lowest period n = 5, 7, 9, . . . : xn−1 · (x3− x−2)+(x2 +1) = 0
α-type Misiurewicz point an of preperiod n = 3, 5, 7, . . . : xn−1 · (x3− x−2)+2 = 0
In the other branch at an+1 , consider the β -type Misiurewicz point bn with the preperiod
n = 2, 4, 6, . . . : xn−1 · (x3− x−2)−2 = 0
These polynomials give geometric asymptotics λn ∼ λ0±K ·λ−n

0 with λn < λ0 in the first
two cases. Here Btop(i) = Bcomb(1/6) is determined from λ0 , which satisfies x3−x−2= 0.
The polynomial for bn is obtained in Appendix A. It shows λn > λ0 , so Bcomb(θ) does not
have a local maximum at θ0 = 1/6 and Btop(c) does not have a local maximum at c = i.
See Theorem 4.7.4 for another application of bn .

→

→

→

↙

↙

n = 0 n = 1

n = 2 n = 3

n = 4 n = 5

Figure 6: Consider zooms of λ (θ) centered at θ0 = 1/6 with λ0 = 1.521379707. The width is
0.284×2−n and the height is 2.185×λ

−n
0 . A left-sided maximum at θ0 was observed by Tan Lei

and Thurston [21]. There seems to be a kind of self-similarity with respect to the combined scaling
by 22 and by λ 2

0 , not by 21 and λ 1
0 . See Example 6.3 for the asymptotics of specific sequences;

one of these shows that there is not a right-sided maximum at θ0 = 1/6 .
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Remark 6.4 (Hölder asymptotics)
1. On every branch at a Misiurewicz point a with ray period rp, there is a sequence of
centers cn → a, such that the period n is increasing by rp and there is no lower period
between cn and a. For a suitable choice of angles we have θn ∼ θ0± K̃ · 2−n. In the
examples given here and in Section 3.1, and for all β -type Misiurewicz points according
to Proposition 6.2, we have Btop(cn) = Bcomb(θn) ∼ Bcomb(θ0)±K′ · λ−n

0 with Btop(a) =
Bcomb(θ0) = logλ0/ log2. This confirms the Hölder exponent Bcomb(θ0) for Bcomb(θ) at
θ = θ0 given by Bruin–Schleicher [11], see Conjecture 4.11. Similar statements apply to
Misiurewicz points an→ a and to periodic angles θ0 with Bcomb(θ0)> 0, see below.
2. Suppose the center parameters cn are on an arc before or behind the Misiurewicz point
a. They converge geometrically as well, cn ∼ a+ K̂ · ρ−r j

a with n = n0 + rp j and the
multiplier ρa = ( f p

a )
′(za) at the periodic point za [14]. By the corresponding estimate

for fundamental domains [55, 29], h(c) is Hölder continuous on the arc at a with the
optimal exponent h(a) · p/ log |ρa| . (If this was > 1, then h would be differentiable with
h′(a) = 0.)

Example 6.5 (Asymptotics at θ0 = 3/15)
The primitive Mandelbrot set M4 in the 1/3-limb of M has the external angles θ0 = 3/15
and 4/15 at its root a. It is approached from below by sequences cn and an of lowest period
or preperiod, such that the growth factor λn is the largest root of the following polynomial:
Center cn of period n = 7, 11, 15, . . . : xn · (x4−2x−1)+(x4 +1) = 0
α-type Misiurewicz point an of preperiod n = 3, 7, 11, . . . : xn · (x4−2x−1)+2 = 0
In the other branch at an−1 , consider the β -type Misiurewicz point bn with the preperiod
n = 4, 8, 12, . . . : xn · (x4−2x−1)−2(x3 + x2 +1) = 0
These polynomials give geometric asymptotics λn ∼ λ0±K ·λ−n

0 with λn < λ0 in the first
two cases. Here λ0 satisfies x4−2x−1 = 0 and Btop(M4) = Bcomb(3/15) = logλ0/ log2.
The polynomial for bn is obtained in Appendix A. It shows λn > λ0 , so Bcomb(θ) does not
have a left-sided local maximum at θ0 = 3/15. See Theorem 4.7.4 for another application
of bn . In the p/q-sublimb of M4 , the β -type Misiurewicz point b′n of lowest preperiod
n = 4q−6 = 2, 6, 10, . . . has a λn according to xn · (x−1)(x4−2x−1)−2(x2 +1) = 0 .

The sequence of b′n is generalized to all hyperbolic components as follows:

Proposition 6.6 (Comparing sublimbs)
1. Consider a hyperbolic component Ω of period m and the β -type Misiurewicz point
bp/q of lowest preperiod qm−m0 in the sublimb with rotation number p/q . Then the core
entropy h(bp/q) = logλq is strictly decreasing with q (and independent of p).
2. If Ω is not of pure satellite type, so h(Ω) = logλ0 > 0, the core entropy converges
geometrically: h(bp/q)∼ h(Ω)+K ·λ−mq

0 with K > 0.

Proof: We may assume m > 1, since the limbs of the main cardioid are treated explicitly
according to Example 3.2. There is an m-cycle of small Julia sets with q branches at the
small α-fixed points. For q > 2, label the edges such that the first one connects the critical
value to a small α-fixed point, . . . , edge number q′ = mq−q0 = 1+m(q−2) is an image
at the same small α , and the last edge contains the critical point. When analogous edges
are used for q = 2 as well, the cycle of small α points is marked in addition, but this does
not change the highest eigenvalue of the Markov matrix Aq : the n-th order preimages of
any point in the Hubbard tree are growing as λ n

q , as does the sum of any row of An
q for any

35



subdivision into edges. The characteristic matrix Aq− xI is shown in (9), where the off-
diagonal blocks are 0 except for the last column each. The top left block has dimension q′

and the lower right block is independent of q, as is the last column of the lower left block.

Aq− xI =



−x 2

1 . . . 0
. . . . . . ...

. . . . . . ...
1 −x 0

1
0 B− xI
...


(9)

The characteristic polynomial is obtained from Laplace cofactor expansion along the first
row and multiplied with xq0 afterwards. We have h(bp/q) = logλq , where λq is the largest
root of an equation

xmq ·P(x)−Q(x) = 0 (10)

with P(x) monic. Now P(x) = xk · (x−1) ·P0(x), where P0(x) is the characteristic polyno-
mial for the center c of Ω : when the entry 2 in the first row of A2 is omitted, this removes
Q(x) from the characteristic polynomial. On the other hand, the same Markov matrix will
be obtained for c, when edges to preimages of βc are added to the Hubbard tree according
to Lemma 3.6.4. So P(λ0) = 0 and P(x) > 0 for x > λ0 . If λ0 > 1 then λ0 is a simple
root of P(x) by Lemma 3.9.1 and Proposition 3.11.2. Now λq > λ0 shows P(λq)> 0 and
Q(λq)> 0. Setting x = λq+1 in the equation (10) for λq gives

λ
mq
q+1 ·P(λq+1)−Q(λq+1) =

(
λ

mq
q+1−λ

m(q+1)
q+1

)
·P(λq+1)< 0 , (11)

which implies monotonicity λq+1 < λq . Set λ∗ := limλq ≥ λ0 . Assuming λ0 > 1, we
have λ∗ > 1 and taking x = λq , q→ ∞ in (10) gives Q(λ∗)/P(λ∗) = ∞, so P(λ∗) = 0,
λ∗ = λ0 , and Q(λ0) 6= 0. Geometric asymptotics are obtained as in Proposition 6.2 since
P′(λ0) > 0. The asymptotics will be different when λ0 = 1 but we still have λq ↘ λ0 :
assuming λ∗ > λ0 and taking q→ ∞ in (10) again gives the contradiction P(λ∗) = 0.

6.2 Local maxima

The wake of a pinching point c is bounded by two parameter rays, such that it contains
all parameters c′ � c. If c is a root or a Misiurewicz point, these parameter rays have
rational angles. When c is a branch point, the wake consists of subwakes corresponding
to the branches behind c. In the wake of a hyperbolic component, the wakes of satellite
components may be called subwakes of the original component, since they correspond
to sublimbs. Motivated by an analogous result for α-continued fractions, Tiozzo has
conjectured that on any wake or subwake, or union of neighboring subwakes, the maximal
entropy is attained at the β -type Misiurewicz point of lowest preperiod [60]. According
to Proposition 4.8.1, these points are organized in an infinite tree of veins, whose branch
points are centers and Misiurewicz points. This suggests to address the Tiozzo Conjecture
by considering the two cases separately. The first case is Proposition 6.6.1, but the second
case is still open:
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Conjecture 6.7 (Comparing branches)
Consider a branch point a and for each branch behind a, the β -type Misiurewicz point
of lowest preperiod. Of these, the point with the lowest preperiod has strictly maximal
entropy and biaccessibility dimension.

This conjecture is equivalent to the Tiozzo Conjecture (except for neighboring subwakes
of a branch point). Figure 1 suggests a local maximum of Bcomb(θ) at θ0 = 1/4, which
implies a local maximum of Btop(c) at c0 = γM(θ0). On the other hand, Figure 6 implies
only a left-sided maximum [21] at the external angle θ0 = 1/6 of c0 = i. In Example 6.3
a sequence of β -type Misiurewicz points bn with angles↘ 1/6 and h(bn) > h(i) is con-
structed, proving that there is no right-sided maximum at 1/6 . By Theorem 4.7.2 or
Proposition 3.11.3, Bcomb(θ) cannot be constant on an interval, since β -type Misiurewicz
points are dense in ∂M and approximated by maximal-primitive Mandelbrot sets.

Theorem 6.8 (Maximal entropy)
1. Btop(c) has a local minimum at c0 ∈M , if and only if Btop(c0) = 0 or c0 is primitive
renormalizable and not a maximal-primitive root.
If there is a local maximum at c0 ∈ ∂M , then c0 is an endpoint and neither simply renor-
malizable nor on the boundary of the main cardioid.
Analogous statements hold for local minima and maxima of Bcomb(θ), but there are strict
local minima at the inner angles of branch points in addition,
2. Conjecture 6.7 implies: on the interval of any wake or subwake, Bcomb(θ) restricted to
dyadic angles has a strict absolute maximum at the dyadic angle of lowest preperiod. The
restriction of Bcomb(θ) to dyadic angles will be continuous.
3. ASSUMING CONJECTURE 4.11, THAT Bcomb(θ) IS CONTINUOUS ON S1 :
Conjecture 6.7 implies: on any wake or subwake, Btop(c) has a strict absolute maximum
at the β -type Misiurewicz point c0 of lowest preperiod. There will be a local maximum at
c ∈ ∂M , if and only if c is of β -type.

Proof: 1. Suppose Btop(c0) > 0. If c0 is primitive renormalizable and not a maximal-
primitive root, then Btop(c) ≥ Btop(c0) for c behind the corresponding primitive-maximal
root c1 . Otherwise c0 is only finitely renormalizable, so its fiber is trivial, and for c on the
regulated arc before c0 we have Btop(c)< Btop(c0) by Theorem 4.7.2.
If c0 is simply renormalizable or on the boundary of the main cardioid, it is approximated
by β -type Misiurewicz points c with Btop(c) > Btop(c0). Otherwise it has trivial fiber, so
there is a finite number of rays landing, and this number must be one when there is a
maximum at c0 : otherwise Btop(c)> Btop(c0) for c� c0 .
2. Fix an interval of angles corresponding to a wake and denote the dyadic angle of small-
est denominator by θ0 . Choose another dyadic angle θ in the interval. Intersecting the
regulated arc from c0 = γM(θ0) to c = γM(θ) with the tree of veins according to Proposi-
tion 4.8 gives a finite number of branch points on a finite number of veins. The first vein
is ending at c0 and the last vein at c. For each vein, the endpoint has lowest preperiod
in the subwake of the origin of the vein. The finite collection of endpoints is compared
successively by applying Proposition 6.6 or Conjecture 6.7 to the corresponding branch
point of the tree.
A sequence of dyadic angles θn → θ0 has higher preperiods eventually. There are pa-
rameters an↗ c0 = γM(θ0) with cn = γM(θn) behind an , so Btop(an)< Btop(cn)< Btop(c0).
Continuity on the vein according to Theorem 4.9 gives Btop(an)→ Btop(c0), which implies
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Btop(cn)→ Btop(c0) and Bcomb(θn)→ Bcomb(θ0).
3. Choose a non-simply-renormalizable parameter c ∈ ∂M within the given wake or
subwake. c has trivial fiber. If it is not of β -type, the regulated arc from c0 to c is
meeting a countable family of veins with endpoints cn→ c. The recursive application of
item 2 shows that Btop(cn) is strictly decreasing; we have Btop(cn)→ Btop(c) by assuming
continuity of Bcomb(θ) and Theorem 4.12. So Btop(c)<Btop(c0), there is no local maximum
at c, and there is a strict absolute maximum at c0 for the given wake or subwake.

6.3 Self-similarity

Figures 1 and 6 suggest that the graph of the biaccessibility dimension Bcomb(θ) may be
self-similar; see also Tan Lei–Thurston [21]. According to the examples and propositions
in Section 6.1, there are periodic and preperiodic angles θ0 with the following property:
Bcomb(θ0) = logλ0/ log2 > 0 and there is a sequence of rational angles θn → θ0 with n
growing by rp, θn ∼ θ0+ K̃ ·2−n, and Bcomb(θn)∼ Bcomb(θ0)+K′ ·λ−n

0 . So we shall zoom
into the graph by scaling with 2rp j in the horizontal and by λ

rp j
0 in the vertical direction:

• Is there a limit set for j→ ∞ in local Hausdorff topology [55]?

• Is it the graph of a function S(x) = lim λ
rp j
0 ·

(
Bcomb(θ0 + 2−rp jx)− Bcomb(θ0)

)
,

which would be self-similar under combined scaling by 2rp and λ
rp
0 ?

The latter property can hold only when θ ′n−θn = o(2−n) implies Bcomb(θ
′
n)−Bcomb(θn) =

o(λ−n
0 ), which would follow from a suitable uniform Hölder estimate for Bcomb(θ) in a

neighborhood of θ0 [11].

Figure 7: The graph of λ (θ) representing Bcomb(θ) on the intervals [52/255 , 67/255] and
[820/4095 , 835/4095], which are corresponding to the limbs 1/2 and 1/3 of the primitive Man-
delbrot set M4 , see also Figure 5.

A different similarity phenomenon is suggested by Figure 7. It has a qualitative expla-
nation by the linear map between angles of α-type and β -type Misiurewicz points in
different sublimbs. But this correspondence cannot describe the graph of Bcomb(θ) in de-
tail, because the angles of a branch point in one limb may correspond to endpoints or to
several branch points in the other limb.
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A Markov matrices and characteristic polynomials

Let us start with the proof of Lemma 3.6:
1. When c is preperiodic and the two edges at z = 0 are numbered first and second,
the Markov matrix Ã has the block form given in (12). Note that the first two rows are
identical, because no marked point is mapped to 0, so the image of any edge either covers
both edges at 0 or neither. u = 1 or u = 0 indicates whether the edge intersecting (0, βc]
is mapped over itself.

Ã =


0 u C
0 u C

B1 B2 D

 →


0 0 0
0 u C

B1 B3 D

 =


0 0

B A

 (12)

A conjugate matrix is obtained by adding the first column to the second column and
subtracting the second row from the first, denoting B1 +B2 = B3. In the new block form,
the second row and column may be interpreted as the transitions to and from the joint
edge containing z = 0, so a block equal to A is identified; now Ã has the same eigenvalues
as A and an additional eigenvalue 0. Note that B3 and A have a unique entry of 2. While
Ã corresponds to the usual definition of the Hubbard tree, A is used for the examples in
the present paper; Ã should be used as the adjacency matrix for a subshift of finite type.
— Now A is irreducible if and only if Ã is irreducible, since total connectivity of the
Markov graph is transferred. Consider eigenvalues of modulus λ to show that primitivity
is preserved as well.
2. The fixed point αc is not marked when the parameter c in the 1/2-limb is not an α-type
Misiurewicz point. Splitting the edge containing αc gives the following transition matrix
Ã, since the new edges at αc are mapped over each other. The proof proceeds as in item 1
with the additional eigenvalue −1.

Ã =


0 1 C
1 0 C

B1 B2 D

 →


−1 0 0
1 1 C

B1 B3 D

 =


−1 0

B A


(13)

3. When an edge is split by marking a preimage of a marked point, Ã will have an
additional eigenvalue 0 by the same proof as for item 1.
4. When, e.g., edges towards βc and to a first and second preimage are attached to the
Hubbard tree, the new matrix has the following block form. Ã is reducible, since the
original edges are not mapped to the new ones. The additional eigenvalues are 1 and 0.

Ã =


0 0 0
1 0 0 0
0 1 1

B A

 (14)

To obtain the characteristic polynomials for a sequence of matrices, the characteristic
matrix A− xI may be transformed to a companion matrix with x-dependent coefficients.

39



When every orbit of edges is passing through a small subfamily, the rome method can
be used [2]. We shall employ matching conditions for a piecewise-linear model with
expansion rate λ > 1 again; as the characteristic polynomial, the resulting equation has
the growth factor as its largest positive solution, since all edges have expressions for the
length that are positive for λ > 1, and the topological entropy is determined uniquely
by the combinatorics. Using the normalization of length 1 for [0,±αc] for parameters c
behind γM(9/56), we have 2/λ for [αc , γc(9/28)], 2/λ 2 for [αc , γc(9/56)], 2/(λ −1) for
[∓αc ,±βc], and 2/(λ (λ −1)) for [−αc , γc(3/4)].
Computation for Example 3.3 with q = 3 and for Example 6.1: Pulling back edges
towards βc gives the following matching conditions:

cn : λ
3 = 2+

2
λ
+

2
λ 2 + . . .+

2
λ n−4 +

1
λ n−3

an : λ =
2

λ 2 + . . .+
2

λ n−1

bn : λ =
2

λ 2 + . . .+
2

λ n−2 +
2

λ n−1(λ −1)

Computation for Example 6.3: For the β -type Misiurewicz parameter c = bn consider
the edges between αc and fc(c). Each edge is mapped to the adjacent one by f 2

c (z), as is
the corresponding branch. The matching condition is

λ
2 =

2
λ
+

2
λ 3 + . . .+

2
λ n−1 +

2
λ n−1(λ −1)

.

Computation for Example 6.5: The Hubbard tree for cn , an , or bn contains a sequence
of small edges scaled by λ 4, since they are mapped to the next one by f 4

c (z). The matching
condition for bn is

λ =
2

λ 2 +
2

λ 6 + . . .+
2

λ n−2 +
2

λ n−1(λ −1)
.

B Piecewise-linear models and Galois conjugates

Suppose c ∈M ∩R and h(c) = logλ with λ > 1. Then fc(z) = z2 + c is semi-conjugate
to a piecewise-linear map with slope ±λ , which can be normalized to gλ (x) = λ |x|− 1
[38, 17]. If c is primitive renormalizable, the small Julia sets are squeezed to points by the
semi-conjugation. Given λ > 1, we may iterate gn

λ
(0) to obtain a kneading sequence and

an external angle; in the postcritically finite case, the Hubbard tree is obtained as well,
and the parameter c is found from the real or complex Spider Algorithm [26, 12].
In our real case, the external angle θ and the kneading sequence ν are easily converted:
an entry A in ν means that a binary digit of θ is changing. From the kneading sequence,
gn

λ
(0) is obtained as a polynomial of degree n−1 in λ , which has coefficients ±1. Here

λ |x| − 1 is replaced with ±λx− 1 according to the corresponding entry in ν . If θ is
rational, or ν is preperiodic or ∗-periodic, λ is obtained from a polynomial equation. The
polynomial has coefficients ±1 in the periodic case, and the lower coefficients are ±2, 0
in the preperiodic case. For rational and irrational angles θ , the kneading determinant
Dc(t) = ∑

∞
n=0±tn is holomorphic for t ∈ D; its coefficients ±1 correspond to the binary
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digits 0 and 1 of the external angle θ ≤ 1/2 associated to the real parameter c. This
function is related to the generating function of lap numbers on [−βc , βc] as follows [38]:

Lc(t) =
∞

∑
n=1

L( f n
c ) tn−1 =

1
1− t

+
1

(1− t)2 Dc(t)
. (15)

Now Lc(t) is meromorphic in D and logL( f n
c ) grows as n logλ . Thus the smallest pole of

Lc(t) and the smallest root of Dc(t) are located at t = 1/λ . These functions are rational,
if and only if the dynamics is postcritically finite, hyperbolic, or parabolic. In the p-
periodic case we have Dc(t) = P(t)/(1− t p) with P(t) of degree p−1, and the Douady
substitution for any ĉ ∈M ∩R, and for period doubling in particular, reads

Dc(t) =
P(t)

1− t p ⇒ Dc∗ĉ(t) = P(t)Dĉ(t
p) and Dc∗(−1)(t) = Dc(t)

1− t p

1+ t p . (16)

Note that this gives the maximum relation of Lemma 3.9.2 for every real parameter ĉ.
Now Dc(t) is constant for parameters c between a center and each of the neighboring
parabolic parameters, and the satellite bifurcation changes it discontinuously at the center.
But the roots of Dc(t) in D depend continuously on c, and h(c) is continuous in particular
[38]: if a parameter is not hyperbolic or parabolic, it is approximated by parameters
from both sides such that the first N coefficients of Dc(t) are constant and N → ∞. The
same applies to a primitive parabolic parameter approximated from below, and the explicit
change at a center does not affect roots in D. Alternatively, Douady [17] shows that h(c)
cannot have a jump discontinuity: for any 1 < λ ≤ 2, the kneading sequence of the tent
map gλ (x) is realized in any full family of unimodal maps. Thus the monotonic map h(c)
is surjective, hence continuous.
For a postcritically finite real polynomial with the topological entropy h = logλ , λ is the
highest eigenvalue of a non-negative integer matrix, so it is an algebraic integer and its Ga-
lois conjugates are bounded by λ in modulus. Conversely, given λ > 1 with this property,
Thurston [58, 59] constructs a postcritically finite real polynomial with the topological
entropy h = logλ . This polynomial will not be quadratic in general. For a postcritically
finite real quadratic polynomial, the Galois conjugates of λ must belong to the set M2 de-
fined below, which is related to an iterated function system: for complex λ with |λ | > 1
consider the holomorphic affine maps

gλ ,±(z) =±λ z−1 g−1
λ ,±(z) =±

1
λ
(z+1) g−1

λ
(K) = g−1

λ ,+(K)∪g−1
λ ,−(K) . (17)

The corresponding attractor Kλ is non-empty and compact; according to Hutchinson [27]
it is the unique compact set with g−1

λ
(K) = K. It is obtained as the intersection of iterated

preimages of a large disk as well, so 0 ∈Kλ implies that the two preimages according
to (17) are never disjoint, and Kλ will be connected. But Kλ may be connected also for
parameters λ with 0 /∈Kλ ; then it cannot be full.

Proposition B.1 (Barnsley–Bousch IFS and Thurston set)
Consider the compact sets M2 ⊂M1 ⊂M0 from Figure 8, which are defined by taking
the closure of roots of families of polynomials, Mi = {P−1(0) |P(λ ) as follows} :
For the Barnsley connectedness locus M0 , P(λ ) has coefficients ±1, 0 with P(0) 6= 0.
For the Bousch set M1 , P(λ ) has coefficients ±1 from any composition gn

λ ,±(0).
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For the Thurston set M2 , P(λ ) has coefficients ±1 from a composition gn
λ ,±(0) corre-

sponding to a real periodic kneading sequence.
1. For |λ |> 1 consider the Hutchinson set Kλ of the IFS (17). It is connected if and only
if λ ∈M0 . We have 0 ∈Kλ if and only if λ ∈M1 .
2. M0 and M1 are invariant under inversion and under taking the n-th root. Denoting a
symmetric annulus by Ar = Dr \D1/r , we have A√2 ⊂M0 ⊂A2 and A 4√2 ⊂M1 .
3. M0 and M1 are locally connected and connected by Hölder paths.
4. M2 is locally connected and for |λ | < 1, the sets M2 and M1 agree. Moreover,

M2 is the closure of the set of Galois conjugates for eh(c), when all real centers c are
considered.

Figure 8: The sets M2 ⊂M1 ⊂M0 of Proposition B.1 are shown in black, red (light gray), and
blue (dark gray), respectively [58]. The computation is based on polynomials of degree≤ 32. Due
to this restriction, M2 looks thinner than M1 for |λ |< 1, but they are equal there in fact.

See [6, 7, 61] for the proof. Note that Bousch is using different dynamics, which are
conjugate to 1

λ
(z± 1) instead of ± 1

λ
(z+ 1), but the attractor Kλ will be the same due

to its symmetry. For item 1, the points in Kλ are parametrized by sequences of signs
as z = ∑±λ−n, and the intersection g−1

λ ,+(Kλ )∩ g−1
λ ,−(Kλ ) ⊂Kλ is considered: Kλ is

connected if the intersection is not empty. If P(λ ) = 0 for a polynomial with coeffi-
cients ±1, z = 0 will be periodic under g−1

λ
, so 0 ∈Kλ . Moreover, there are parameters

λ ∈ ∂M0 ∩ ∂M1 , such that the intersection is {0} and the dynamics on Kλ is quasi-
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conformally equivalent to a quadratic polynomial on a dendrite Julia set [5, 18], cf. Re-
mark 3.10.3. See [3] for more detailed pictures of M1 and for the similarity between M1
and Kλ for suitable λ .
Due to renormalization, M2 is invariant under an n-th root as well. In Figure 8, M2
is restricted strongly for |λ | > 1, and this is interpreted as follows: for λ >

√
2 and a

postcritically finite fc(z) with core entropy h(c) = logλ , the Galois conjugates of λ are
considerably smaller than λ [58, 59]. Now M2 is pathwise connected as well: for |λ |> 1
consider the parametrization M2 \D = {λ |Dc(1/λ ) = 0,−2 ≤ c ≤ 0} by the kneading
determinant. All roots of Dc(t) in D depend continuously on the parameter c by the
arguments sketched above. In the case of |λ | < 1, Tiozzo [61] shows that M2 and M1
agree by constructing a suitable dense set of polynomials. Irreducible polynomials yield
the statement on Galois conjugates. See [60, 61] for images of sets, which are analogous
to M2 for other principal veins. Thurston has started a description of quadratic and higher
parameter spaces in terms of critical portraits as well, see [21, 22].
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The program Mandel is available from www.mndynamics.com . For dyadic angles you
can compute Bcomb(θ) and zoom into its graph. Or display the fractals of Appendix B.

46

http://arxiv.org/abs/math/9711213
http://milne.ruc.dk/~lunde/Holodyn/Abstracts.htm
http://www.math.sunysb.edu/jackfest/Videos/
http://arXiv.org/abs/1305.3542
http://arXiv.org/abs/1310.7647
http://arXiv.org/abs/math/9801150
http://arXiv.org/abs/math/0210382
http://www.mndynamics.com

	1 Introduction
	2 Background
	2.1 Quadratic dynamics
	2.2 Topological entropy
	2.3 Hausdorff dimension
	2.4 Perron–Frobenius theory

	3 Postcritically finite polynomials and core entropy
	3.1 Computing the core entropy
	3.2 Estimates of the core entropy
	3.3 Renormalization
	3.4 Biaccessibility dimension of postcritically finite maps

	4 The biaccessibility dimension
	4.1 Combinatorial and topological biaccessibility
	4.2 Core entropy revisited
	4.3 Monotonicity, level sets, and renormalization
	4.4 Entropy and biaccessibility on veins
	4.5 Continuity with respect to the angle and the parameter

	5 Biaccessibility of the Mandelbrot set
	6 Asymptotic self-similarity and local maxima
	6.1 Hölder asymptotics
	6.2 Local maxima
	6.3 Self-similarity

	A Markov matrices and characteristic polynomials
	B Piecewise-linear models and Galois conjugates

