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Abstract

There is an alternative construction of mating, when at least one polynomial
is preperiodic: shift the infinite critical value of the other polynomial to a
preperiodic point.

1 Introduction
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2 Background

2.1 Polynomials and rational maps
2.2 The Thurston Theorem

2.3 A path in moduli space

The pullback of homeomorphisms 1, was easy to define, but it is not computed eas-
ily: repeated pullbacks would be defined piecewise, and solving the Beltrami equa-
tion numerically would be impractical as well. The isotopy classes in Teichmiiller
space are meant to represent only combinatorial information anyway: we are inter-
ested in the pullback of marked points x;(n) € 7(o7([t)])) and maps f,, and the
combinatorial description is needed to make a finite choice between different possi-
ble preimages. This characterization of the topology has been implemented in terms
of spiders [?, ?], medusas [?], and triangulations [?]. These contain the necessary
information from Teichmiiller space without using actual homeomorphisms ,, .
Following Bartholdi-Nekrashevych [?] and Buff-Chéritat [?], the following alter-
native method shall be discussed. It means that Teichmiiller space is used explicitly
only to check a suitable initialization of a path in moduli space. Afterward the path
is pulled back simply by choosing preimages from continuity. The application to
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matings is discussed in Sections 5 and 6. The spider algorithm is implemented with
a path in [?] and further applications to quadratic polynomials are given; twisted
polynomials and Latteés maps are discussed in [?] as well.

Proposition 2.1 (Path in moduli space)

Suppose g is a Thurston map of degree d > 2, and there is a continuous path of
homeomorphisms 1y : C — @, 0<t<1, withvgog = fyo for a rational map
Jfo. So [th] = a4([0]).

1. Using a suitable normalization, there is a unique path of homeomorphisms 1y ,
0 <t < oo, with 0 g = fi oy for rational maps fi, so [Yei1] = o,([¢e]). It
projects to a continuous path w([yby]) in moduli space. Note that oy ([1o]) = [n] for
n € N.

2. Suppose that d = 2, or more generally, that g is bicritical. Normalize the marked
points x;(t) € w([1y]) such that 0 and oo are critical and 1 is posteritical or marked
in addition. Then the path x;(t) in moduli space is computed for 1 < t < oo by
pulling back the initial segment continuously.

Probably the statement remains true when g is not bicritical, but the pullback
is less explicit, and I am not sure if it is unique in general. Note that [1)1] = o,([¢])
and an initial path 1, is projected to moduli space. If this condition is neglected
by choosing an arbitrary path from 7([¢)g]) to m([¢1]), the pullback may correspond
not to g but to some twisted version of it. Conditions for convergence of o7 ([t])
are discussed in Section 2.2; in the case of a non-(2, 2, 2, 2) orbifold, convergence in
Teichmiiller space is equivalent to convergence in moduli space, and in both spaces,
convergence of the sequence implies convergence of the path ast — oco. The situation
is more involved for an orbifold of type (2, 2, 2, 2). The implementation in terms of
a piecewise linear path is discussed in [?, ?].

Proof: 1. o, and 7 are continuous. Marked points never meet under iterated
pullback, so 1,1 is always defined uniquely up to Mobius conjugation.

2. In this normalization, we have f;(z) = m;(z?), and the M&bius transformation
m; is determined uniquely from the images of 0, 1, oo at time ¢. The path is pulled

back uniquely by f; '(z) = {/m;*(z), since any coordinate is either constant 0 or
00, or the argument of the radical is never passing through 0 or co. [ ]

Example 2.2 (Misiurewicz polynomial mates Basilica)

The mating of the Misiurewicz polynomial P(z) = z?+i and the Basilica polynomial
Q(z) = 2% — 1 is illustrated in Figure ?7?. Consider the Thurston Algorithm for the
formal mating g with a path according to Initialization ?? and the radius R; =
exp(2'7"). Rescaled to fi(oo) = 1, the initialization for 0 <t <1 reads

__(-iy/R R
“Traonet U gmer W

Note that the normalization x3(t) = —x1(t) is satisfied for t > 1 only. Fort > 0 we
have the following pullback relation, and the formula for xo(t + 1) simplifies to (77)
when t > 1:

z1(t) = —i/R? (1)

z1(t) — xo(t)
1-— xg(t)

l'l(t) — l'g(t)

(2)



where the sign is chosen by continuity. According to Theorem ?7, the rational maps
fi converge to the rescaled geometric mating f(z) = (22+2)/(2*—1), so z1(t) — —2,
xo(t) — 2, and x3(t) — 2. Since two postcritical points are identified, the iteration
diverges in moduli space and in Teichmiiller space.

An alternative interpretation of the path reads as follows: by a standard tech-
nique from algebraic topology, the universal cover of moduli space is constructed as
the space of homotopy classes of paths with a fixed starting point. So that space
is isomorphic to Teichmiiller space. In this sense, the pullback of the path is a di-
rect implementation of o, , and information on the dynamics of o, is available from
homotopy classes of paths. See Section 3.3 in [?] for an application.

Sarah Koch [?] gives criteria on g for the existence of a moduli space map from
7(og([¢])) to m([¢]), which is a critically finite map in the same dimension as the
moduli space. See also Section 3.2 in [?]. Then the path may be chosen within
the Julia set of the moduli space map, which is easily visualized when it is one-
dimensional [?]. This happens for a NET map, which has four postcritical points
and only simple critical points [?]. In the quadratic case of NET maps, a moduli
space map exists if at least one critical point is postcritical, and not when ¢ is a
Lattes map of type (2, 2, 2, 2).

Example 2.3 (Obstructed self-mating)

For the self-mating of the Basilica polynomial P(z) = Q(z) = 2* — 1, consider
the radius R; = exp(2'™") again, and Initialization ?? reads x,(t) = —1/R; for
0 <t < 1. The normalization is symmetric under inversion, and the pullback
relation z1(t + 1) = —y/—z1(t) has an explicit solution in this case, which is given
by x1(t) = —=1/R; for 0 <t < co0. So z1(t) - —1 ast — oo, and the rational maps
fi(z) = (22 + 21(t))/(1 + 21(t)2*) degenerate to a constant map. Note that there
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is a moduli space map x1(t) = —(asl(t + 1)) , and for a different initialization, the
path would be contained in the unit circle.

3 Captures and encaptures

Captures and encaptures are ways to construct a Thurston map by shifting a critical
value to a preperiodic point; we shall see that encaptures are related to matings with
preperiodic polynomials in fact.

Add remarks on implementation and convergence.

These constructions rely on the concept of shifting or pushing a point from a
to b along an arc C'. This means that a homeomorphism ¢ is chosen, which is the
identity outside off a tubular neighborhood of C, and such that ¢(a) = b. So an
unspecified point close to a is mapped to a and b is mapped to an arbitrary point
nearby.

Proposition 3.1 (and definition)

Suppose P is a postcritically finite quadratic polynomial and z, € KCp, is preperiodic
and not postcritical. Let the new postceritical set be Py = Pp U {P"(z)|n > 0}.
Consider an arc C from oo to z; not meeting another point in P, and choose a
homeomorphism ¢ shifting oo to z; along C, which is the identity outside off a
sufficiently small neighborhood of C'. Then:



® g = po P is well-defined as a quadratic Thurston map with postcritical set P, . It
1s a capture if z1 is eventually attracting and an encapture in the repelling case.

e The combinatorial equivalence class of g depends only on P and on the homotopy
class of the arc C.

Proof: By construction, ¢ is a postcritically finite branched cover, when the
neighborhood of C' does not include any postcritical point except z;. Note that
the preimages of z; under P are mapped to some arbitrary point by ¢, so if z;
was periodic or postcritical, g would not be well-defined. Finally, if we have two
different homeomorphisms ¢ and ¢’ along the same curve or along two homotopic
curves, then ¢’ = (¢’ o ¢™1) o g and the homeomorphism ¢’ o ™! is isotopic to the
identity, since the appended path C’- C~! is contractible relative to P, \ {z1}. =

Consider the following applications and possible generalizations:

e If a capture g = ¢ o P is combinatorially equivalent to a rational map f,
this gives a hyperbolic map of capture type. Let us say that f is a Wittner
capture, if the capture path C'is homotopic to a rational external ray followed
by an internal ray of P; this construction is due to Ben Wittner [?] and Mary
Rees [?]. Note that Rees denotes only Wittner captures as captures, while
general captures are called maps of type III. Maps of this type are never
matings, but they may have a representation as an anti-mating [?].

e Encaptures along external rays are related to matings in the following Sec-
tion 4.

e Encaptures apply not only to polynomials P, but to rational maps in general
as long as the other critical orbits are finite. This construction provides a finite
regluing followed by a possible combinatorial equivalence. In a more general
situation, a countable regluing is followed by a semi-conjugation [?, ?].

e Recapture means that the finite critical value P(0) is shifted to a preim-
age of 0, resulting in a Thurston map equivalent to a hyperbolic polynomial.
Relations to internal addresses and to Dehn twisted maps are discussed in [?].

Initialization 3.2 (Captures and encaptures)

Consider a capture or encapture g = p o P according to Proposition 3.1. Then the
Thurston Algorithm is implemented by pulling back a path in moduli space, which is
witialized as follows: normalize P such that the critical points are 0, oo and another
point in Py \ {z1} is 1. For 0 <t <1, z1(t) moves from oo to z along C, while all
of the other marked points stay fized.

Under a non-conjugate-limbs condition, Wittner captures are unobstructed [7]
and encaptures along external rays have only obstructions satisfying the assumptions
of Theorem ?7; see below. So the sequence of rational maps converges to a rational
map f, unless the orbifold of f is of type (2, 2, 2, 2): then the sequence does not
converge in general, but it might converge for a special choice of C.

Proof: Note that when the preperiod of z; is one, the corresponding periodic
point satisfies 1;(—21) = —z(t) only for ¢ > 1. Since ¢ ™' og = Pold and P is
holomorphic, we have [Id] = o,([¢!]) and we may initialize the Thurston Algorithm
with a path v, from ¥y = ¢! to 1, = Id. Now ™! is the identity outside off a



small neighborhood of C, so #; can be chosen such that it moves x(t) = 14(21)
from ¢~ !(z;) = oo to z; along C, and leaves the other marked points untouched.
By Proposition 2.1 the projection from 7 to M defines a suitable initialization to
compute the Thurston pullback 7(o7) from an explicit pullback in moduli space. m

4 Encaptures and matings

The representation of matings by encaptures along external rays is motivated by
remarks in [?, ?]. In the former paper, the boundary of a capture component in V,
is described by matings, which are related to the postcritically finite map of capture
type by regluing. This means that the critical value is shifted from oo along an
external ray followed by an internal ray, and then moved back along an internal
ray. So can the mating be constructed by shifting the critical value directly from
00 to 21 = 7,(#) along the external ray R,(#)? This is true in general when z; is
preperiodic, not only when it is on the boundary of a hyperbolic component, but we
shall not discuss postcritically infinite maps here.

Theorem 4.1 (Matings as encaptures)

Suppose P is postcritically finite and 0 is preperiodic, such that ¢ = v,,(—0) is not
in the conjugate limb and z, = ,(6) € 0K, is not postcritical. Then the encapture
go = g o P along R,(0) is combinatorially equivalent or essentially equivalent to
the geometric mating f defined by P11 Q.

So if PIIQ is not of type (2, 2, 2, 2), any implementation of the Thurston pull-
back for gy gives a converging sequence of rational maps; e.g., Initialization 3.2
applies. The normalization 5, = 1 ensures f(1) = 1. Note that the encapture does
not work if both P and @) are hyperbolic; then there is an alternative construction
with two paths [?]. When only one of the two polynomials is hyperbolic, then ei-
ther PITQ or QI[P is an encapture. And when both are critically preperiodic,
then both PI]Q and Q][ P are encaptures, unless a critical point is iterated to the
other critical point: then oo shall be iterated to 0. — By choosing encaptures along
homotopic external rays, examples of shared matings are obtained in [?].

Recall the notation g and g for the formal mating and the essential mating; we
shall see below that there is an essential encapture gy as well. Before showing gy ~ ¢
let us consider a few examples, to see how identifications happen and why they may
happen in different ways for g and gy :

e When g = 9/56 U 1/4, so # = 3/4, there are no postcritical identifications:
g = g and gy = gy. The encapture can be constructed from the formal mating
by shifting all postcritical points in v (KC,) to ¢o(K,) along external rays, so
gp and g are combinatorially equivalent.

e In reverse order we have g = g = 1/4 U 9/56 again, but gy # gg for 6 = 47/56
and p = v,,(1/4). Now gy(o0) has preperiod and period three, but gy(co) has
period one. The shift gy creates a subset of the lamination with angle 6 in the
exterior of I, , so there is a triangle connecting 3/7, 5/7, 6/7 with a homotopic
preimage under gy ; pinching the surrounding Lévy-cycle gives gy .



e The converse happens for ¢ = 1/4 1 3/14, so p = v,(1/4) and 0 = 11/14.
Now both g = 7,,(3/14) and g(oo) have preperiod one and period three, while
g # g has period one. But this identification is immediate in the encapture
go = Gp, SInce 21 = —q .

e Both phenomena happen at the same time for ¢ = 3/1413/14, so § = 11/14.
In gy the 3-cycle of P is collapsed by a triangle in the exterior, while the 3-cycle
of @ is identified with «, immediately. We have gy # g9 % g # g.

For longer ray connections, there may be a similar splitting of branch points and
similar immediate identifications, but otherwise the encapture can be understood in
terms of the same ray-equivalence classes as the formal mating:

Proof of Theorem 4.1: Denote by X the union of all postcritical ray-
equivalence classes of the formal mating ¢ = P U (). Define another Thurston
map ¢° by shifting the critical value o (q) to vo(21) along Ry, without modifying
g on X. Consider the extended Hubbard tree 7, C K, , which consists of regular
arcs connecting the postcritical points of gg. Then go : T, — T, where T) =T,
except for a slight detour at P~!(0). We may assume that g% o ¢y = g0 gy in a
neighborhood of T),. So the two maps are combinatorially equivalent, even if we
mark the critical point co in addition, since all other marked points are contained
in 7}, and 7}, is connected.

Now consider a path of Thurston maps g¢; , such that postcritical points of P stay
fixed in ¢(0K,) and all posteritical points of @ move from ¢ (9K,) to ¢o(0K,)
along external rays of g. This deformation is a kind of two-sided pseudo-isotopy
from ¢ to g7, since marked points may collapse in different ways on both ends, while
each component of X is invariant under each g,. By collapsing all components of
X to points and modification at preimages, equivalent quotient maps are obtained
for all g;, in particular for g and ¢%, where postcritical points have been identified
already in different ways. So we know that g = § ~ f and we may consider §’ as an
essential map in the sense of Definition 7?7, with I' consisting of loops around those
trees in X, which contain at least two postcritical points of ¢?. So ¢? is essentially
equivalent to f, combinatorially equivalent if I' = ), and the same applies to the
original encapture gy . [ ]

5 Matings on the boundary of capture compo-
nents

6 Visualization of captures and encaptures

To illustrate the process of slow capture or encapture, we may also define a sequence
or path of images ¢:(KC,) of the filled Julia set, which is constant K, for 0 < ¢ < 1.
It will show more and more identifications happening by a piecewise pseudo-isotopy.
See also the videos on www.mndynamics.com . A similar initialization is used for
Dehn twisted maps; see [?] and the Examples 3.1 and 3.7 in [?].
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