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Abstract

There is an alternative construction of mating, when at least one polynomial
is preperiodic: shift the infinite critical value of the other polynomial to a
preperiodic point.

1 Introduction

. . .
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2 Background

2.1 Polynomials and rational maps

2.2 The Thurston Theorem

2.3 A path in moduli space

The pullback of homeomorphisms ψn was easy to define, but it is not computed eas-
ily: repeated pullbacks would be defined piecewise, and solving the Beltrami equa-
tion numerically would be impractical as well. The isotopy classes in Teichmüller
space are meant to represent only combinatorial information anyway: we are inter-
ested in the pullback of marked points xi(n) ∈ π(σng ([ψ0])) and maps fn , and the
combinatorial description is needed to make a finite choice between different possi-
ble preimages. This characterization of the topology has been implemented in terms
of spiders [?, ?], medusas [?], and triangulations [?]. These contain the necessary
information from Teichmüller space without using actual homeomorphisms ψn .

Following Bartholdi–Nekrashevych [?] and Buff–Chéritat [?], the following alter-
native method shall be discussed. It means that Teichmüller space is used explicitly
only to check a suitable initialization of a path in moduli space. Afterward the path
is pulled back simply by choosing preimages from continuity. The application to
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matings is discussed in Sections 5 and 6. The spider algorithm is implemented with
a path in [?] and further applications to quadratic polynomials are given; twisted
polynomials and Lattès maps are discussed in [?] as well.

Proposition 2.1 (Path in moduli space)
Suppose g is a Thurston map of degree d ≥ 2, and there is a continuous path of

homeomorphisms ψt : Ĉ → Ĉ, 0 ≤ t ≤ 1, with ψ0 ◦ g = f0 ◦ ψ1 for a rational map
f0 . So [ψ1] = σg([ψ0]).

1. Using a suitable normalization, there is a unique path of homeomorphisms ψt ,
0 ≤ t < ∞, with ψt ◦ g = ft ◦ ψt+1 for rational maps ft , so [ψt+1] = σg([ψt]). It
projects to a continuous path π([ψt]) in moduli space. Note that σng ([ψ0]) = [ψn] for
n ∈ N.

2. Suppose that d = 2, or more generally, that g is bicritical. Normalize the marked
points xi(t) ∈ π([ψt]) such that 0 and ∞ are critical and 1 is postcritical or marked
in addition. Then the path xi(t) in moduli space is computed for 1 ≤ t < ∞ by
pulling back the initial segment continuously.

Probably the statement remains true when g is not bicritical, but the pullback
is less explicit, and I am not sure if it is unique in general. Note that [ψ1] = σg([ψ0])
and an initial path ψt is projected to moduli space. If this condition is neglected
by choosing an arbitrary path from π([ψ0]) to π([ψ1]), the pullback may correspond
not to g but to some twisted version of it. Conditions for convergence of σng ([ψ0])
are discussed in Section 2.2; in the case of a non-(2, 2, 2, 2) orbifold, convergence in
Teichmüller space is equivalent to convergence in moduli space, and in both spaces,
convergence of the sequence implies convergence of the path as t→∞. The situation
is more involved for an orbifold of type (2, 2, 2, 2). The implementation in terms of
a piecewise linear path is discussed in [?, ?].

Proof: 1. σg and π are continuous. Marked points never meet under iterated
pullback, so ψt+1 is always defined uniquely up to Möbius conjugation.

2. In this normalization, we have ft(z) = mt(z
d), and the Möbius transformation

mt is determined uniquely from the images of 0, 1, ∞ at time t. The path is pulled

back uniquely by f−1t (z) = d

√
m−1t (z), since any coordinate is either constant 0 or

∞, or the argument of the radical is never passing through 0 or ∞.

Example 2.2 (Misiurewicz polynomial mates Basilica)
The mating of the Misiurewicz polynomial P (z) = z2+i and the Basilica polynomial
Q(z) = z2 − 1 is illustrated in Figure ??. Consider the Thurston Algorithm for the
formal mating g with a path according to Initialization ?? and the radius Rt =
exp(21−t). Rescaled to ft(∞) = 1, the initialization for 0 ≤ t ≤ 1 reads

x1(t) = −i/R2
t x2(t) =

(1− i)/R2
t

1 + (1− t)e−4
x3(t) =

i/R2
t

1 + (1− t)2ie−4
. (1)

Note that the normalization x3(t) = −x1(t) is satisfied for t ≥ 1 only. For t ≥ 0 we
have the following pullback relation, and the formula for x2(t+ 1) simplifies to (??)
when t ≥ 1:

x1(t+1) = ±

√√√√x1(t)− x2(t)
1− x2(t)

x2(t+1) = ±

√√√√x1(t)− x3(t)
1− x3(t)

x3(t+1) = −x1(t+1) ,

(2)
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where the sign is chosen by continuity. According to Theorem ??, the rational maps
ft converge to the rescaled geometric mating f(z) = (z2+2)/(z2−1), so x1(t)→ −2,
x2(t)→ 2, and x3(t)→ 2. Since two postcritical points are identified, the iteration
diverges in moduli space and in Teichmüller space.

An alternative interpretation of the path reads as follows: by a standard tech-
nique from algebraic topology, the universal cover of moduli space is constructed as
the space of homotopy classes of paths with a fixed starting point. So that space
is isomorphic to Teichmüller space. In this sense, the pullback of the path is a di-
rect implementation of σg , and information on the dynamics of σg is available from
homotopy classes of paths. See Section 3.3 in [?] for an application.

Sarah Koch [?] gives criteria on g for the existence of a moduli space map from
π(σg([ψ])) to π([ψ]), which is a critically finite map in the same dimension as the
moduli space. See also Section 3.2 in [?]. Then the path may be chosen within
the Julia set of the moduli space map, which is easily visualized when it is one-
dimensional [?]. This happens for a NET map, which has four postcritical points
and only simple critical points [?]. In the quadratic case of NET maps, a moduli
space map exists if at least one critical point is postcritical, and not when g is a
Lattès map of type (2, 2, 2, 2).

Example 2.3 (Obstructed self-mating)
For the self-mating of the Basilica polynomial P (z) = Q(z) = z2 − 1, consider
the radius Rt = exp(21−t) again, and Initialization ?? reads x1(t) = −1/Rt for
0 ≤ t ≤ 1. The normalization is symmetric under inversion, and the pullback

relation x1(t + 1) = −
√
−x1(t) has an explicit solution in this case, which is given

by x1(t) = −1/Rt for 0 ≤ t <∞. So x1(t)→ −1 as t→∞, and the rational maps
ft(z) = (z2 + x1(t))/(1 + x1(t)z

2) degenerate to a constant map. Note that there

is a moduli space map x1(t) = −
(
x1(t + 1)

)2
, and for a different initialization, the

path would be contained in the unit circle.

3 Captures and encaptures

Captures and encaptures are ways to construct a Thurston map by shifting a critical
value to a preperiodic point; we shall see that encaptures are related to matings with
preperiodic polynomials in fact.
Add remarks on implementation and convergence.

These constructions rely on the concept of shifting or pushing a point from a
to b along an arc C. This means that a homeomorphism ϕ is chosen, which is the
identity outside off a tubular neighborhood of C, and such that ϕ(a) = b. So an
unspecified point close to a is mapped to a and b is mapped to an arbitrary point
nearby.

Proposition 3.1 (and definition)
Suppose P is a postcritically finite quadratic polynomial and z1 ∈ Kp is preperiodic
and not postcritical. Let the new postcritical set be Pg = PP ∪ {P n(z1) |n ≥ 0}.
Consider an arc C from ∞ to z1 not meeting another point in Pg and choose a
homeomorphism ϕ shifting ∞ to z1 along C, which is the identity outside off a
sufficiently small neighborhood of C. Then:
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• g = ϕ ◦ P is well-defined as a quadratic Thurston map with postcritical set Pg . It
is a capture if z1 is eventually attracting and an encapture in the repelling case.

• The combinatorial equivalence class of g depends only on P and on the homotopy
class of the arc C.

Proof: By construction, g is a postcritically finite branched cover, when the
neighborhood of C does not include any postcritical point except z1 . Note that
the preimages of z1 under P are mapped to some arbitrary point by g, so if z1
was periodic or postcritical, g would not be well-defined. Finally, if we have two
different homeomorphisms ϕ and ϕ′ along the same curve or along two homotopic
curves, then g′ = (ϕ′ ◦ ϕ−1) ◦ g and the homeomorphism ϕ′ ◦ ϕ−1 is isotopic to the
identity, since the appended path C ′ · C−1 is contractible relative to Pg \ {z1}.

Consider the following applications and possible generalizations:

• If a capture g = ϕ ◦ P is combinatorially equivalent to a rational map f ,
this gives a hyperbolic map of capture type. Let us say that f is a Wittner
capture, if the capture path C is homotopic to a rational external ray followed
by an internal ray of P ; this construction is due to Ben Wittner [?] and Mary
Rees [?]. Note that Rees denotes only Wittner captures as captures, while
general captures are called maps of type III. Maps of this type are never
matings, but they may have a representation as an anti-mating [?].

• Encaptures along external rays are related to matings in the following Sec-
tion 4.

• Encaptures apply not only to polynomials P , but to rational maps in general
as long as the other critical orbits are finite. This construction provides a finite
regluing followed by a possible combinatorial equivalence. In a more general
situation, a countable regluing is followed by a semi-conjugation [?, ?].

• Recapture means that the finite critical value P (0) is shifted to a preim-
age of 0, resulting in a Thurston map equivalent to a hyperbolic polynomial.
Relations to internal addresses and to Dehn twisted maps are discussed in [?].

Initialization 3.2 (Captures and encaptures)
Consider a capture or encapture g = ϕ ◦ P according to Proposition 3.1. Then the
Thurston Algorithm is implemented by pulling back a path in moduli space, which is
initialized as follows: normalize P such that the critical points are 0, ∞ and another
point in Pg \ {z1} is 1. For 0 ≤ t ≤ 1, x1(t) moves from ∞ to z1 along C, while all
of the other marked points stay fixed.

Under a non-conjugate-limbs condition, Wittner captures are unobstructed [?]
and encaptures along external rays have only obstructions satisfying the assumptions
of Theorem ??; see below. So the sequence of rational maps converges to a rational
map f , unless the orbifold of f is of type (2, 2, 2, 2): then the sequence does not
converge in general, but it might converge for a special choice of C.

Proof: Note that when the preperiod of z1 is one, the corresponding periodic
point satisfies ψt(−z1) = −x1(t) only for t ≥ 1. Since ϕ−1 ◦ g = P ◦ Id and P is
holomorphic, we have [Id] = σg([ϕ

−1]) and we may initialize the Thurston Algorithm
with a path ψt from ψ0 = ϕ−1 to ψ1 = Id. Now ϕ±1 is the identity outside off a

4



small neighborhood of C, so ψt can be chosen such that it moves x1(t) = ψt(z1)
from ϕ−1(z1) = ∞ to z1 along C, and leaves the other marked points untouched.
By Proposition 2.1 the projection from T to M defines a suitable initialization to
compute the Thurston pullback π(σng ) from an explicit pullback in moduli space.

4 Encaptures and matings

The representation of matings by encaptures along external rays is motivated by
remarks in [?, ?]. In the former paper, the boundary of a capture component in Vn
is described by matings, which are related to the postcritically finite map of capture
type by regluing. This means that the critical value is shifted from ∞ along an
external ray followed by an internal ray, and then moved back along an internal
ray. So can the mating be constructed by shifting the critical value directly from
∞ to z1 = γp(θ) along the external ray Rp(θ) ? This is true in general when z1 is
preperiodic, not only when it is on the boundary of a hyperbolic component, but we
shall not discuss postcritically infinite maps here.

Theorem 4.1 (Matings as encaptures)
Suppose P is postcritically finite and θ is preperiodic, such that q = γM(−θ) is not
in the conjugate limb and z1 = γp(θ) ∈ ∂Kp is not postcritical. Then the encapture
gθ = ϕθ ◦ P along Rp(θ) is combinatorially equivalent or essentially equivalent to
the geometric mating f defined by P

∐
Q.

So if P
∐
Q is not of type (2, 2, 2, 2), any implementation of the Thurston pull-

back for gθ gives a converging sequence of rational maps; e.g., Initialization 3.2
applies. The normalization βp = 1 ensures f(1) = 1. Note that the encapture does
not work if both P and Q are hyperbolic; then there is an alternative construction
with two paths [?]. When only one of the two polynomials is hyperbolic, then ei-
ther P

∐
Q or Q

∐
P is an encapture. And when both are critically preperiodic,

then both P
∐
Q and Q

∐
P are encaptures, unless a critical point is iterated to the

other critical point: then∞ shall be iterated to 0. — By choosing encaptures along
homotopic external rays, examples of shared matings are obtained in [?].

Recall the notation g and g̃ for the formal mating and the essential mating; we
shall see below that there is an essential encapture g̃θ as well. Before showing g̃θ ∼ g̃
let us consider a few examples, to see how identifications happen and why they may
happen in different ways for g and gθ :

• When g = 9/56 t 1/4, so θ = 3/4, there are no postcritical identifications:
g̃ = g and g̃θ = gθ . The encapture can be constructed from the formal mating
by shifting all postcritical points in ϕ∞(Kq) to ϕ0(Kp) along external rays, so
gθ and g are combinatorially equivalent.

• In reverse order we have g̃ = g = 1/4 t 9/56 again, but g̃θ 6= gθ for θ = 47/56
and p = γM(1/4). Now gθ(∞) has preperiod and period three, but g̃θ(∞) has
period one. The shift ϕθ creates a subset of the lamination with angle θ in the
exterior of Kp , so there is a triangle connecting 3/7, 5/7, 6/7 with a homotopic
preimage under gθ ; pinching the surrounding Lévy-cycle gives g̃θ .
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• The converse happens for g = 1/4 t 3/14, so p = γM(1/4) and θ = 11/14.
Now both q = γM(3/14) and g(∞) have preperiod one and period three, while
g̃ 6= g has period one. But this identification is immediate in the encapture
gθ = g̃θ , since z1 = −αp .

• Both phenomena happen at the same time for g = 3/14t 3/14, so θ = 11/14.
In gθ the 3-cycle of P is collapsed by a triangle in the exterior, while the 3-cycle
of Q is identified with αp immediately. We have g̃θ 6= gθ 6∼ g 6= g̃.

For longer ray connections, there may be a similar splitting of branch points and
similar immediate identifications, but otherwise the encapture can be understood in
terms of the same ray-equivalence classes as the formal mating:

Proof of Theorem 4.1: Denote by X the union of all postcritical ray-
equivalence classes of the formal mating g = P t Q. Define another Thurston
map gθ by shifting the critical value ϕ∞(q) to ϕ0(z1) along Rθ , without modifying
g on X. Consider the extended Hubbard tree Tp ⊂ Kp , which consists of regular
arcs connecting the postcritical points of gθ . Then gθ : T ′p → Tp , where T ′p = Tp
except for a slight detour at P−1(0). We may assume that gθ ◦ ϕ0 = ϕ0 ◦ gθ in a
neighborhood of Tp . So the two maps are combinatorially equivalent, even if we
mark the critical point ∞ in addition, since all other marked points are contained
in Tp and Tp is connected.

Now consider a path of Thurston maps gt , such that postcritical points of P stay
fixed in ϕ0(∂Kp) and all postcritical points of Q move from ϕ∞(∂Kq) to ϕ0(∂Kp)
along external rays of g. This deformation is a kind of two-sided pseudo-isotopy
from g to gθ, since marked points may collapse in different ways on both ends, while
each component of X is invariant under each gt . By collapsing all components of
X to points and modification at preimages, equivalent quotient maps are obtained
for all gt , in particular for g and gθ, where postcritical points have been identified
already in different ways. So we know that g̃θ = g̃ ∼ f and we may consider g̃θ as an
essential map in the sense of Definition ??, with Γ consisting of loops around those
trees in X, which contain at least two postcritical points of gθ. So gθ is essentially
equivalent to f , combinatorially equivalent if Γ = ∅, and the same applies to the
original encapture gθ .

5 Matings on the boundary of capture compo-

nents

. . .

6 Visualization of captures and encaptures

To illustrate the process of slow capture or encapture, we may also define a sequence
or path of images ψt(Kp) of the filled Julia set, which is constant Kp for 0 ≤ t ≤ 1.
It will show more and more identifications happening by a piecewise pseudo-isotopy.
See also the videos on www.mndynamics.com . A similar initialization is used for
Dehn twisted maps; see [?] and the Examples 3.1 and 3.7 in [?].
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