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Definitions of mating
Combine two quadratic polynomials to obtain a rational map. Classical results
by Douady–Hubbard and Rees–Shishikura–Tan.
Topological mating: glue filled Julia sets of P (z) = z2 + p and Q(z) = z2 + q.
Geometric mating: rational map conjugate to the topological mating.
Formal mating g: planes of polynomials are identified with half-spheres (left).
In the postcritically finite case, the Thurston Algorithm defines an equivalent
rational map, the combinatorial mating f . Iteration (middle) and limit (right).

Actually, in the example of p = i and q = −1, the iteration diverges in Teichmüller
space and in moduli space, because two postcritical points of P are identified in
the limit. But the rational maps do converge.

Slow mating algorithm
The pullback of marked points in moduli space requires a choice of square-roots.
It is determined by combinatorial–topological data in Teichmüller space, which
have been implemented with Medusas (Hubbard et alii, Boyd–Henriksen) or tri-
angulations (Bartholdi).
The slow mating algorithm pulls back a path in moduli space, where the choice
of square-root is determined from continuity (Bartholdi–Nekrashevych, Buff–
Chéritat). Teichmüller space is used only to define a suitable initialization, which
is given by simple formulas involving an initial radius R > 2. For large R, slow
mating approximates equipotential gluing, an alternative definition of mating
(Milnor, Petersen–Meyer, Chéritat, Buff–Epstein–Koch).

Convergence of slow mating
The Thurston Algorithm of g is divergent, when two postcritical points belong to
the same ray-equivalence class, since they need to be identified. This can be done
by modifying g to an essential mating g̃ (Rees, Shishikura). Alternatively:

Theorem 1 (Convergence of maps and rational ray-equivalence classes)
When the unmodified Thurston map g = P t Q has removable obstructions, the
rational maps do converge to the combinatorial mating f in a suitable normaliza-
tion, at least when the orbifold is hyperbolic. All rational ray-equivalence classes
are collapsed, and converge to (pre-)periodic points of f .

• So we can implement the unmodified Thurston Algorithm without caring about
the topology of postcritical ray-equivalence classes.
• Implications on convergence of Julia sets and holomorphic motions.
• The proof is based on Selinger’s extension of the pullback to augmented Teich-
müller space, as conjectured by Boyd–Henriksen.

Hausdorff obstructions
Theorem 2 (Unbounded cyclic ray connections)
Suppose p primitive renormalizable and Kp locally connected. There are param-
eters c∗ ≺ c0 ≺ p , such that for all parameters q with q on the open arc from
c∗ to c0 , the formal mating g = P t Q has non-uniformly bounded cyclic ray
connections. Moreover, these are nested such that the ray-equivalence relation is
not closed. (Airplane t Basilica is due independently to Bartholdi–Dudko.)

Lattès matings
Lattès maps f are double covered by an affine map L(w) = ηw + κ on a torus.
Seven of the following matings are due to Shishikura; the two other ones of case
a) answer a question of Milnor: the Peano curve γ is not unique.

L(w) = ηw + κ geometric mating anti-mating
a) κ = 0, η2 = 2i f ∼= 3/4

∐
3/4 f ∼= 1/4

∏
1/4

f ' 5/28
∐

13/28

f ' 7/60
∐

29/60
b) κ = 0, η2 = −2 f ' 1/12

∐
5/12 —

c) κ = 1/2, f ∼= 5/6
∐

5/6 f ∼= 3/14
∏

3/14

η2 = −3+i
√
7

2

d) κ = 0, f ∼= 1/6
∐

5/14

η2 = −3+i
√
7

2 f ∼= 3/14
∐

3/14 f ∼= 5/6
∏

5/6

f ' 3/14
∐

1/2

f ' 5/6
∐

1/2

Theorem 3 (Lattès matings)
1. There are precisely 30 formal matings g = P t Q of quadratic polynomials,
such that the essential mating g̃ has a parabolic orbifold of type (2, 2, 2, 2), and
the parameters p and q are not in conjugate limbs of the Mandelbrot set. Up to
complex conjugation and interchanging P and Q, these matings are represented
by the nine matings in the table.
2. In each case, the essential mating is Thurston-equivalent to a rational map
f ' P

∐
Q, which is described by η2 in the table.

The proof of item 1 is based on polynomial combinatorics and Sharland’s obser-
vation that a fixed ray-equivalence class must contain a polynomial fixed point.
Item 2 is obtained from the Shishikura Algorithm: represent the essential mating
by a lamination, lift its pullback to a lattice to obtain an equivalent affine map,
compute the eigenvalue η. Note that in the exceptional case of type (2, 2, 2, 2), it
is not enough to show that g̃ is unobstructed (Selinger–Yampolsky). For 1/6t1/2:

Divergence of slow mating
The Thurston pullback of a Lattès map has a neutral fixed point. For the formal
matings above, the pullback of marked points has attracting multipliers from
pinching removable obstructions, and an attracting center manifold. So:

Theorem 4 (Divergence of Lattès matings)
The slow mating algorithm is divergent when f is of type (2, 2, 2, 2), except for
±1/4 t ±1/4 due to its symmetric initialization.

This is joint work with Arnaud Chéritat; please watch his movie of 1/6 t 1/6.

Bounded ray connections
Suppose Kp and Kq are locally connected, with p in the 1/3-limb ofM, e.g., and
q in the Airplane component or before it. Now there are no direct ray connections
between the Hubbard tree Tq ⊂ Kq and one side of the arc [αp , −αp] ⊂ Kp .

Theorem 5 (Examples of matings with bounded ray connections)
Then all ray-equivalence classes of the formal mating P tQ are uniformly bounded
trees, and the topological mating P

∐
Q exists as a branched cover.

•When P and Q are geometrically finite, this provides a construction independent
of the Thurston and Rees–Shishikura–Tan Theorems. A question of Epstein.
• When P or Q is not geometrically finite, probably the topological mating has
not been constructed by other methods, except for q = −1, but the geometric
mating is not constructed here either.


