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Abstract

We present a geometrical approach to the inverse scattering problem for the
Schrödinger and Klein-Gordon equations. For given scattering operator S we
show uniqueness of the potential, we give explicit limits of the high-energy be-
havior of the scattering operator, and we give reconstruction formulas for the
potential.

Our mathematical proofs closely follow physical intuition. A key observation
is that at high energies the translation of wave packets dominates over spreading
during the interaction time.

1 Introduction, the Schrödinger Equation

The Schrödinger equation is a linear evolution equation for a function of time t ∈ R
with values in a state space (phase space) H which is a Hilbert space:

Ψ(·) : R→ H.

The initial value problem reads

i
d

dt
Ψ(t) = H Ψ(t), Ψ(0) = Ψ, (1.1)

with a linear operator H acting on H. This type of equation includes as special cases
nonrelativistic and relativistic quantum mechanics, the Dirac equation, the linear wave
equation (with the usual method to transform a second order equation into a first order
system), and other evolution equations. In the models mentioned above the operator H
is self-adjoint on a suitably chosen domain D(H). Then exp{−itH} is a well defined
unitary operator for all t ∈ R and the unique global solution of the initial value problem
(1.1) is

Ψ(t) = e−itHΨ . (1.2)

We describe our geometrical approach to the inverse problem for the Schrödinger
equation as an equation which describes the motion of particles according to the laws of
quantum mechanics and for the Klein-Gordon equation. The time scales for interaction
and for spreading of wave functions differ at high energies. This implies the simplicity
of the leading behavior of the scattering operator because only the translational part
of the time evolution matters as long as the interaction is strong. We obtain explicit
formulas for the high energy scattering operator which can be used to reconstruct the
potential uniquely. We want to explain why the statements are true and how physical
intuition and mathematical proofs are closely analogous.
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2 Particles in Quantum Mechanics

We describe the state of a quantum mechanical particle in ν-dimensional space by
a normalized vector Ψ ∈ H. The vector can be represented by a square integrable
function ψ(·) ∈ L2(Rν , dx) with volume measure dx as a function depending on the
position x ∈ Rν , or one can use its Fourier transform

ψ̂(·) ∈ L2(Rν , dp), ψ̂(p) := (2π)−ν/2

∫
dx e−ipx ψ(x) (2.1)

depending on the momentum variable p ∈ Rν . We always assume the normalization

‖Ψ‖2 =

∫
dx |ψ(x)|2 =

∫
dp |ψ̂(p)|2 = 1.

We use for the abstract state vector a capital letter Ψ, for its representation as a
function of position ψ(x), or its momentum space wave function ψ̂(p), respectively,
and write

H ←→ L2(Rν , dx) ←→ L2(Rν , dp)

Ψ ←→ ψ(x) ←→ ψ̂(p) (2.2)

to indicate the switching between representations.
For a given state Ψ the probability measures µx on configuration space and µp

on momentum space, respectively,

µx(A) =

∫
A

dx |ψ(x)|2 and µp(B) =

∫
B

dp |ψ̂(p)|2 (2.3)

describe the probabilities to find the particle in A ⊂ Rν in configuration space or in
B ⊂ Rν in momentum space. One may visualize such a state as a cloud of very many
particles where µx(A) describes the fraction of them which have their position in A
and, similarly, µp(B) is the fraction with momentum in B. Such a state is also called
a wave packet.

We extend the triple of representations of state vectors to the linear operators acting
on them. The Fourier transformation (2.1) interchanges differentiation and multiplica-
tion of a function with its argument. Thus we obtain for the position and momentum
operators, respectively,

x ←→ x ←→ i∇p , (2.4)

p ←→ −i∇x ←→ p. (2.5)

If the forces acting on the particle are described as the negative gradient of a potential
function V (x) (conservative mechanical system) then the generator H of the time
evolution, the Hamiltonian or Schrödinger operator, is the energy operator

H = H0 +V (x) (2.6)

which is a sum of the kinetic energy operator H0 – responsible for the kinematics – and
the real valued potential energy which determines the dynamics.
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3 Kinematics

The kinetic energy operator or free Hamiltonian H0 usually is a function H0(p) of the
momentum of the particle. We will study two typical cases, nonrelativistic (NR) and
relativistic (Rel) kinematics. In the first case

NR: H0(p) =
1

2m
p2. (3.1)

It acts as a multiplication operator on φ̂ and as a differential operator on φ :

H0 Φ ←→ (H0 φ)(x) = − 1

2m
(∆φ)(x) ←→ H0(p) φ̂(p) =

1

2m
p2 φ̂(p).

Generally, the velocity operator is the change of position in time:

v(p) =
d

dt
eitH0 x e−itH0

∣∣∣
t=0

= i [H0, x] = ∇pH0(p) , (3.2)

a function of the momentum operator. In the nonrelativistic case it is unbounded:

NR: v(p) =
p

m
. (3.3)

Let us now turn to the scalar relativistic case:

Rel: H0(p) =
√

p2c2 +m2c4 =
√

p2 +m2 (speed of light c = 1). (3.4)

Here the velocity operator is bounded:

Rel: v(p) = ∇pH0(p) = c
pc√

p2c2 +m2c4
=

p√
p2 +m2

. (3.5)

The free time evolution operator is a simple multiplication operator in momentum
space

e−itH0Φ ←→ (e−itH0φ)(x) ←→ e−itH0(p)φ̂(p). (3.6)

While for short times the free classical and quantum time evolutions differ considerably
they behave similarly for large times. Asymptotically, the distribution in configuration
space of a quantum state is in good approximation the same as that of the corresponding
cloud of free classical particles, of the “classical wave packet”. For later applications we
study a particular family of states Φp̄ with compact momentum support around a very
large “average” momentum p̄ ∈ Rν . The unitary operator exp(ip̄x), a function of
the position operator x, shifts a state in momentum space by p̄:

Φ0 ←→ φ0(·) ←→ φ̂0(·) ∈ C∞
0 (Rν) (3.7)

Φp̄ =eip̄xΦ0 ←→ φp̄(x) = eip̄xφ0(x)←→ φ̂p̄(p) = φ̂0(p− p̄). (3.8)

Since φ0(·) ∈ S(Rν), the Schwartz space of rapidly decreasing functions, these states are
well localized in configuration space, too, uniformly in p̄. They have average velocities
around v(p̄) ∈ Rν , where

v(p̄) = ∇H0(p̄) =: v(p̄) ω =

p̄/m NR ,

p̄/
√

p̄2 +m2 Rel ,
ω =

v(p̄)

|v(p̄)|
‖ p̄. (3.9)
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In our context we have to control the localization in configuration space of freely
evolving wave packets. This depends mainly on the support of the state in velocity
(momentum) space. Therefore, we have chosen compactly supported momentum space
wave functions. Then in configuration space the states cannot have compact support
as well but rapid falloff is sufficient there. A special case of such non–propagation
properties of quantum wave packets for long times is∫

|x|<t v(p̄)/2

dx |(e−itH0φp̄)(x)|2 < const(Φ0, n)

(1 + |t v(p̄)|)n
(3.10)

for any n ∈ N uniformly for large p̄. A classical free particle which starts at time
0 from the origin and has momentum p ∈ supp φ̂p̄ will be localized at time t in the
region

x(t) ∈
{
x = tv(p)

∣∣∣ p ∈ supp φ̂p̄

}
⊂ {x | |x− tv(p̄)| < v(p̄)/3} . (3.11)

The “classically forbidden” region |x| < t v(p̄)/2 is separated from the “allowed region”
by at least t v(p̄)/6. The state mainly propagates within the classically allowed region
which moves away from the origin with a positive minimal speed. The “quantum
tails” of the wave packet in the classically forbidden region do not vanish, nevertheless,
they decay very fast in time, both in the future and past. This is physically and
mathematically in close analogy to rays versus waves in optics. While the shadow
behind an obstacle is not totally black due to diffraction it is, nevertheless, quite dark
away from the region which can be reached by straight rays (the role of the increasing
separation t v(p̄)/6 ).

4 Dynamics

The interacting (perturbed) time evolution is generated by the Hamiltonian H,

e−itHΨ, H = H0 +V (x). (4.1)

We will consider here short-range potentials V (x) which are roughly those which de-
crease at least like |x|−(1+ε), ε > 0, as |x| → ∞. More precisely, the set of short-range
potentials is

Vs =

{
V

∣∣∣∣ ∫ ∞

0

sup
|x|≥R

|V (x)| dR <∞
}
. (4.2)

For simplicity of presentation we will restrict ourselves in this paper to bounded poten-
tials. Singular and long-range potentials can be included using standard techniques.

In the present context a short-range potential behaves similarly to a compactly
supported one. Depending on the required accuracy it is essentially concentrated in a
ball of some radius R around the origin.

The influence on the particle by the force −∇V (x) is relevant only as long as
the particle is essentially localized in the interaction region, i.e. where the potential is
strong. We study the scattering states which form the continuous spectral subspace
Hcont(H) = {eigenvectors of H}⊥, they leave the interaction region for large times.
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5 Scattering

For short-range potentials the asymptotic motion of scattering states is an essentially
free motion: For any scattering state Ψ ∈ Hcont(H) there exist free asymptotic config-
urations Φ± ∈ H such that∥∥e−it [H0+V ] Ψ− e−itH0 Φ±∥∥→ 0 as t→ ±∞. (5.1)

This is usually called asymptotic completeness of the wave operators. Similarly, for
any incoming configuration Φ− or outgoing Φ+ there is a corresponding state Ψ ∈
Hcont(H) such that (5.1) holds (existence of wave operators).

A convenient tool to describe scattering is the scattering operator S which maps
an incoming configuration Φ− to the corresponding outgoing configuration Φ+ of the
same state Ψ. For given Φ− let

Ψ = lim
t−→−∞

ei t− [H0+V ] e−i t− H0 Φ− and

Φ+ = lim
t+→∞

ei t+H0 e−i t+ [H0+V ] Ψ.

Then

S(t+ , t−) := ei t+H0 e−i t+ [H0+V ] ei t− [H0+V ] e−i t− H0 , (5.2)

S := s-lim
t+→∞

t−→−∞

S(t+ , t−), satisfies S Φ− = Φ+. (5.3)

For microscopic particles for which quantum mechanics is an adequate description one
cannot really observe more details of the scattering process than those encoded in the
scattering operator. We denote the mapping

Vs → L(H), V 7→ S = S(V ) (5.4)

as the scattering map from short-range potentials to bounded (unitary) scattering op-
erators on the Hilbert space of asymptotic configurations.

The direct problem of scattering theory is to determine for a given potential V
the scattering operator while the inverse problem is to determine the potential(s) if
the scattering operator or part of it is known.

6 Uniqueness of the Potential

We denote by F (H0 ≥ E) the multiplication operator in momentum space with the
characteristic function of the set {p ∈ Rν | H0(p) ≥ E}, i.e. the spectral projection of
the kinetic energy operator to energies above E. The main results about uniqueness are
of the following form. They are a corollary of the asymptotic behavior of the scattering
operator shown below.

Theorem 6.1 The scattering map S : Vs → L(H) is injective. Actually, the high-
energy part of the scattering operator alone: S F (H0 ≥ E), E arbitrarily large, deter-
mines the short-range potential uniquely.
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7 Time Scales and Length Scales for Interaction and

Spreading

For high energy states as constructed in (3.8) scattering theory becomes simple because
two time scales, an interaction time TI(p̄) and a kinematical time of spreading TSp(p̄)
satisfy TI(p̄)/TSp(p̄) → 0 as |p̄| → ∞. For a potential which is essentially supported
in a ball of radius R the interaction time is of the order TI(p̄) = R/v(p̄). More
precisely, for Φp̄, Φ′

p̄ as in (3.8) and any ε > 0 there is a radius ρ(ε) such that
uniformly for large |p̄|

|(Φ′
p̄, [S −S(t+ , t−) ] Φp̄)| < ε

v(p̄)
if ±t± > ρ(ε)/v(p̄) ≈ TI(p̄). (7.1)

ρ(ε) is the length scale LI of interaction which is independent of p̄. Intuitively, the
radius of the interaction region and the extension in configuration space of the states
up to effects of size ε sum up to ρ(ε). The interaction time (and consequently the
interaction strength) decreases with |p̄| → ∞ in the nonrelativistic case and remains
fixed and positive for relativistic kinematics.

The kinematical time scale of spreading TSp(p̄) denotes the time after which
spreading of wave packets becomes relevant in the time evolution. As

H0(p) Ψp̄ = H0(p) eip̄x Ψ0 = eip̄xH0(p̄+p) Ψ0

we will expand the kinetic energy function around p̄

H0(p̄+p) =: H0(p̄)+∇H0(p̄)·p+H2(p̄, p). (7.2)

The first summand is a number giving an irrelevant phase, the second equals v(p̄) · p
by (3.9). It is the dominant term which – as a multiple of the momentum operator
– generates a translation of the wave packet without changing its shape. Only the
third term H2 (which is defined by (7.2) ) is responsible for the spreading of the wave
packet. In our examples of “power like” Hamiltonians this part of the Hamiltonian is
weak compared to the translational component: On a compact subset of momentum
space like p ∈ supp φ̂0

TI(p̄)

TSp(p̄)
∼ |H2(p̄, p)|

v(p̄)
≤ const

|p̄|
−−−−→
|p̄|→∞

0. (7.3)

Therefore, the time TSp(p̄) is by a factor proportional to |p̄| longer than TI(p̄), in-
dependent of the kinematics. For large |p̄| we may choose times when the scattering
due to the potential is over but the spreading has not yet really started. Alternatively,
the time TSp(p̄) translates into a length scale LSp(p̄) = v(p̄)TSp(p̄). A particle has to
travel at least that far until spreading may become visible. LSp(p̄) increases propor-
tional to |p̄| for both kinematics. Again, the ratio LI/LSp = TI/TSp ∼ 1/|p̄| → 0 for
any precision ε.

Usually, an interacting time evolution is complicated because the translation of a
wave packet, its spreading, and the influence of the potential all occur at the same time
and in the same region. In the high-energy limit it is sufficient for the calculation of
the scattering operator to treat translation of wave packets rather than their correct
free evolution. Since in this limit spreading occurs only when and where the interaction
is negligible, i.e. when the free and interacting time evolutions are almost the same,
the effect of spreading is canceled (becomes invisible) in the scattering operator. Thus,
high energy scattering is simple and it can be inverted simply!
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8 High Energy Scattering

The crucial uniformity of the estimate (7.1) enables us to interchange the limits
±t± →∞ and |p̄| → ∞. This simplifies the remaining discussion very much. Actually,
not the time but the separation from the region of a strong potential determines the
quality of approximation. With correspondingly chosen variables r± := t± v(p̄) we get

lim
|p̄|→∞

(Φ′
p̄, S Φp̄) = lim

|p̄|→∞
lim

±t±→∞
(Φ′

p̄, S(t+ , t−) Φp̄)

= lim
|p̄|→∞

lim
±r±→∞

(
Φ′

p̄, S

(
r+

v(p̄)
,
r−
v(p̄)

)
Φp̄

)
= lim

±r±→∞
lim
|p̄|→∞

(
Φ′

p̄, S

(
r+

v(p̄)
,
r−
v(p̄)

)
Φp̄

)
. (8.1)

As seen in (7.1) the asymptotic equality (8.1) remains true even after multiplication
with v(p̄) which is a much stronger statement in the nonrelativistic case. To determine

(Φ′
p̄, S(t+ , t−) Φp̄) =

(
Φ′

0, e
−ip̄x S(t+ , t−) eip̄x Φ0

)
(8.2)

for large finite times and p̄ consider e.g. the second pair of factors in (5.2).

e−ip̄x eit− [H0+V ] e−it−H0 eip̄x

= eit− [H0(p+p̄)+V (x)] e−it−H0(p+p̄)

= eit− [H0(p̄)+v(p̄)·p+H2(p̄,p)+V (x)] e−it− [H0(p̄)+v(p̄)·p+H2(p̄,p)]

= eit− [v(p̄)·p+H2(p̄,p)+V (x)] e−it− [v(p̄)·p+H2(p̄,p)]

= eir− [ω·p+{H2(p̄,p)/v(p̄)}+{V (x)/v(p̄)}] e−ir− [ω·p+{H2(p̄,p)/v(p̄)}] (8.3)

using again t± = r±/v(p̄) and the direction ω = v(p̄)/v(p̄) as in (3.9). Due to (7.3)
the functions of the momentum operator

[ ω ·p+{H2(p̄,p)/v(p̄)} ] −−−−→
|p̄|→∞

ω ·p (8.4)

converge in strong resolvent sense and similarly for the other exponent. Therefore, for
fixed r− and large |p̄| the following approximation is good:

eir− [ω·p+{H2(p̄,p)/v(p̄)}+{V (x)/v(p̄)}] e−ir− [ω·p+{H2(p̄,p)/v(p̄)}]

≈ eir− [ω·p+{V (x)/v(p̄)}] e−ir−ω·p (8.5)

= exp

{
−i
v(p̄)

∫ 0

r−

dr V (x + ω r)

}
. (8.6)

The approximation (8.5) is the only approximation we have to make! If {H2(p̄,p)/v(p̄)}
would commute with {V (x)/v(p̄)} then we would have exact cancellation and (8.5)
would be an equality as well. A careful estimate of the correction terms can be given
for all Hamiltonians considered here. It is uniform in r− and when compared to
{V (x)/v(p̄)} it has additional falloff like 1/|p̄| for p̄→∞ due to (7.3).

7



Enss and Jung Inverse Scattering

Combining (8.6) with the corresponding term for positive times we obtain for large
|p̄|

(Φ′
p̄ , SΦp̄) ≈

(
Φ′

0 , exp

{
−i
v(p̄)

∫ ∞

−∞
dr V (x + ωr)

}
Φ0

)
. (8.7)

9 High Energy Limits of the Scattering Operator

Next we give the limiting behavior of the scattering operator in simple cases, Φp̄, Φ′
p̄,

and p̄ ∈ Rν as given in (3.8). The strong influence of the kinematics is clearly visible.
For an overview of many further results see [5] and the references.

Theorem 9.1 (scalar relativistic, short-range, [15])
For the scalar relativistic Hamiltonian

H =
√

p2 +m2 +V (x)

with v(p̄)→ 1 one obtains

(Φ′
p̄, S Φp̄) −−−−→

|p̄|→∞

(
Φ′

0, exp

{
−i
∫
dr V (x + ωr)

}
Φ0

)
. (9.1)

If, however, v(p̄)→∞ we can expand the exponential in (8.7)

exp

{
− i

v(p̄)

∫
dr V (x + ωr)

}
≈ 1− i

v(p̄)

∫
dr V (x + ωr) + · · ·

(9.2)

which explains the following nonrelativistic result. The leading behavior of the scatter-
ing operator is the identity operator (no scattering). The next order correction depends
on the potential.

Theorem 9.2 (nonrelativistic, short-range, [10], [4], [18], [6], [8])
For the Hamiltonian

H =
1

2m
p2 +V (x)

v(p̄) (Φ′
p̄, i(S−1)Φp̄) −−−−→

|p̄|→∞

∫
dr (Φ′

0, V (x+ωr)Φ0). (9.3)

In the quotations we have included similar results obtained by other methods, some-
times under more restrictive assumptions. This result is to be expected from the Born
approximation. It holds also under the given weaker assumptions on the falloff of the
potential where the validity of the Born approximation is not established.
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The estimate (7.1) and the remark following (8.6) justify that multiplication with
v(p̄) ∼ |p̄| is permitted. The terms omitted in the approximation are smaller than
those involving V/v(p̄) .

Remark
In all these limits there are error bounds for large but finite |p̄| which are explicit.
E.g. in equation (9.3) we obtain∣∣∣∣v(p̄) (Φ′

p̄, i(S − 1) Φp̄)−
∫
dr (Φ′

0, V (x + ωr) Φ0)

∣∣∣∣ ≤ const(Φ′
0, Φ0, V )

|p̄|
.

10 Reconstruction of the Potential

The condition ν ≥ 2 (multidimensional inverse problem) enters here to obtain from
the above limits reconstruction formulas and uniqueness. For bounded continuous (or
more general) functions V the expression

X(x,ω) :=

∫
dr V (x+ωr) (10.1)

is the X-ray transform of V . In ν = 2 dimensions lines and hyperplanes are the same.
Therefore, (10.1) is the Radon transform as well. The latter is known to be uniquely
invertible because the assumption (4.2) implies V ∈ L2(R2), see e.g. Theorem 2.17
in Chapter I of [11]. The inverse Radon transform yields the unique potential. In
higher dimensions one fixes e.g. x3, . . . , xν and reconstructs the “slices” subsequently.
In particular, it is sufficient to vary ω in a two dimensional plane. For unbounded
or discontinuous potentials the expectation value between states from a dense set of
nice vectors (like those which satisfy (3.7) ) effectively smoothes the potential. This is
enough to reconstruct the potential as a multiplication operator.

11 The Klein-Gordon Equation

The Klein-Gordon equation describes the evolution of a wave-packet for a relativistic
spin-0 particle of mass m > 0 in Rν . Setting the velocity of light c = 1, Planck’s
constant ~ = 1 and the charge q = 1, we have the free equation

ü = ∆u−m2u , or ü+
[
p2+m2

]
u = 0 (11.1)

with the momentum operator p = −i∇. For a particle in an electromagnetic field
E = −∇A0, the corresponding equation reads

(∂t + iA0(x))2u = ∆u−m2u , or

ü+ i2A0(x) u̇+
[
p2 +m2 − A0(x)2

]
u = 0 , (11.2)

thus A0 : Rν → R influences the evolution of u(t) : Rν → C. In the direct scattering
problem, the large time/large distance asymptotics of solutions of (11.2) are described
by a scattering operator S, that is determined from a suitably decaying potential A0.
We shall solve the inverse problem: Determine A0 from S, thus from data that are
in principle measurable in a scattering experiment. All spin-0 particles in nature are
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unstable, and the one-particle Klein-Gordon equation has very limited physical applica-
tions. We believe that it is interesting nevertheless, since we can compare the results to
the Dirac equation (a relativistic wave equation for spin-1/2 particles), and to acoustic
scattering.

To obtain a system of first-order equations, we set

ψ̃(x) =

(
ψ̃1(x)

ψ̃2(x)

)
:=

(
u(x)
u̇(x)

)
, and ˆ̃ψ(p) =

(
ˆ̃

1ψ(p)
ˆ̃

2ψ(p)

)
(11.3)

for the momentum representation. The tilde is used because we will soon introduce

another representation, where the tilde is omitted. Now (11.1) ⇔ i ˙̃Ψ = H̃0 Ψ̃

with H̃0 =

(
0 i
−i B2

0 0

)
and B2

0 = −∆ +m2 = p2 +m2, and (11.2) ⇔ i ˙̃Ψ = H̃1 Ψ̃

with H̃1 =

(
0 i
−i B2

1 2A0(x)

)
, where B2

1 = −∆ +m2 − A0(x)2 = p2 +m2 − A0(x)2.

We have to specify Hilbert spaces and domains for H̃0 and H̃1, such that these operators
are well-defined and self-adjoint. The choice of H̃ = L2(Rν , C2) is not possible, and
before we can define the correct spaces, we shall take a look at B2

0 and B2
1 in H =

L2(Rν , C): B2
0 is self-adjoint and strictly positive on its domain H2(Rν) (a Sobolev

space), and we assume A0 ∈ L∞(Rν , R) with ‖A2
0Φ‖L2 ≤ a‖B2

0Φ‖L2 for some a < 1
and all Φ ∈ H2. By the Kato-Rellich Theorem, B2

1 is self-adjoint and strictly positive
on H2(Rν). Now Bk :=

√
B2

k is a well-defined self-adjoint operator on H1(Rν). B2
0

and B2
1 are second-order differential operators, and B0 is a pseudo-differential operator:

(̂B0Φ)(p) =
√

p2 +m2 Φ̂(p). There is no explicit expression for B1. If we define the
Hilbert spaces

H̃0 := H1(Rν)⊕ L2(Rν) with ‖ψ̃‖2H̃0
= ‖B0 ψ̃1‖2L2 + ‖ψ̃2‖2L2 and (11.4)

H̃1 := H1(Rν)⊕ L2(Rν) with ‖ψ̃‖2H̃1
= ‖B1 ψ̃1‖2L2 + ‖ψ̃2‖2L2 , (11.5)

then H̃k is self-adjoint in H̃k with DH̃k
= H2 ⊕ H1. Now H̃0 and H̃1 are equal as

sets, they have different but equivalent norms, and the natural identification operator
J : H̃0 → H̃1 is a linear isomorphism. For the Schrödinger- or Dirac equation, the
integrand |ψ(x)|2 of the squared norm is interpreted as a probability or charge density,
and for the Klein-Gordon equation, ψ̃∗1(x)(−∆+m2−A2

0(x))ψ̃1(x)+ |ψ̃2(x)|2 represents
an energy density.

Now H̃0 and H̃1 act on different Hilbert spaces, and the definition of the wave
operators must be modified: The identification operator J is used to compare the

interacting states with free asymptotic configurations. e−iH̃1tΨ̃±−J e−iH̃otΨ̃→ 0 for
t→ ±∞ leads to Ψ̃± = Ω̃±Ψ̃ with the wave operators

Ω̃± := s-lim
t→±∞

eiH̃1tJ e−iH̃0t : H̃0 → H̃1 . (11.6)

J is not isometric, but the unitary operator T̃ =

(
1

B1
B0 0

0 1

)
“behaves like J for

large |x|”, thus Ω̃± = s-lim
t→±∞

eiH̃1tT̃ e−iH̃0t, and it is isometric. On suitable states Ψ̃

with momentum support bounded away from the origin, we have the representation

Ω̃± Ψ̃ = Ψ̃ + i

∫ ±∞

0

dt eiH̃1t(H̃1J−JH̃0) e−iH̃0t Ψ̃ (11.7)

10
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as an absolutely convergent Riemann or Bochner integral. It is obtained by writing the
RHS of (11.6) as an integral of its derivative.

We shall introduce the Foldy-Wouthuysen representation of H̃k: For Ψ̃ ∈ H̃0 or

Ψ̃ ∈ H̃1 set Ψ =

(
Ψ1

Ψ2

)
:=

(
B0 Ψ̃1

Ψ̃2

)
. In the FW-momentum representation, we

have ψ̂(p) =

( √
p2 +m2 ˆ̃

1ψ(p)
ˆ̃

2ψ(p)

)
, and the FW-position representation is given by

the inverse Fourier transform ψ(y) of ψ̂(p). The Newton-Wigner position operator y
is defined as multiplication with y in the representation ψ(y). Now
H0 = L2(Rν) ⊕ L2(Rν) = H1 as sets, and we keep the notation J for the natural
identification operator. The inner products are given by

‖ψ‖2H0
= ‖ψ1‖2L2 + ‖ψ2‖2L2 ‖ψ‖2H1

= ‖B1
1

B0

ψ1‖2L2 + ‖ψ2‖2L2 . (11.8)

(B0 and B1 are isomorphisms L2 → H1, thus B1 1/B0 is an isomorphism L2 → L2.)
The Foldy-Wouthuysen representation of the Hamiltonians is

H0 =

(
0 i

√
p2 +m2

−i
√

p2 +m2 0

)
and (11.9)

H1 =

 0 i
√

p2 +m2

−i [p2 +m2 − A2
0(y)] 1√

p2+m2
2A0(y)

 (11.10)

The inner product ofH1 can be written as (Φ, Ψ)H1 = (J−1Φ, g J−1Ψ)H0 for Φ, Ψ ∈ H1,

where g :=

(
1− 1√

p2+m2
A2

0(y) 1√
p2+m2

0

0 1

)
is a strictly positive, bounded self-adjoint

operator on H0. The S-matrix is given by

S = Ω∗
+ Ω− = (J−1Ω+)∗g (J−1Ω−) . (11.11)

In contrast to x, the Newton-Wigner position operator y is self-adjoint. We have

H0 =
√

p2 +m2 β with the matrix β =

(
0 i
−i 0

)
. The velocity is given by

v = i[H0, y] = ∇pH0 =
p√

p2 +m2
β . (11.12)

The eigenspaces β = ±1 are the spectral subspaces of positive/negative kinetic energy.
The negative energy subspace corresponds to anti-particles, here we have

v = − p√
p2 +m2

.

12 Inverse Scattering for the Klein-Gordon Equa-

tion

The NW-position operator generates translations in momentum space:

Ψp̄ := eip̄·y Ψ0 ←→ ψp̄(y) = eip̄·y ψ0(y) ←→ ψ̂p̄(p) = ψ̂0(p−p̄)
(12.1)

11
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with p̄ = p̄ω, ω ∈ Sν−1, p̄ ≥ 0. We shall consider the high-energy asymptotics of
scattering by letting p̄→∞. Now

e−ip̄·y
(
S ψp̄

)
=
(
e−ip̄·y S eip̄·y

)
Ψ0 , (12.2)

and we have

Theorem 12.1 Suppose that ν ∈ N, m > 0 and S is the scattering operator for a Klein-
Gordon particle of mass m in an electrostatic field E = ∇A0, where A0 : Rν → R is
continuous and vanishes at infinity with integrable decay:
∞∫
0

dR ‖χ(|x| > R)A0(x)‖∞ < ∞. Moreover, we make the Kato-Rellich assumption

‖A2
0Ψ‖ ≤ a‖(p2 +m2)Ψ‖ with a < 1. Then the high-energy asymptotics of S are given

by

s-lim
p̄→∞

e−ip̄yS eip̄y = exp

{
−i
∫ ∞

−∞
dr A0(y+rω)

}
, (12.3)

where p̄ = p̄ω with ω ∈ Sν−1. If ν ≥ 2, then A0 can be reconstructed uniquely from the
scattering operator S.

Existence of the wave operators and completeness (i.e. Ran(Ω−) = Ran(Ω+)) can be
shown with standard techniques. By (11.11) we have

e−ip̄yS eip̄y =
(
e−ip̄y(J−1Ω+)eip̄y

)∗ (
e−ip̄yg eip̄y

)(
e−ip̄y(J−1Ω−)eip̄y

)
.

The term in the middle is negligible for p̄→∞ due to the strong convergence

e−ip̄yg eip̄y =

(
1− 1√

(p+p̄)2+m2
A2

0(y) 1√
(p+p̄)2+m2

0

0 1

)
→
(

1 0
0 1

)
.

By Lemma 12.2 below, we have

s-lim
p̄→∞

e−ip̄yJ−1Ω±eip̄y = exp
{
i

∫ ±∞

0

drW (r)
}
,

where W (r) is the multiplication operator in the Foldy-Wouthuysen position represen-
tation ψ(y) given by

W (r) = eiβω ·pr A0(y) e−iβω ·pr

= eiω ·pr 1 + β

2
A0(y) e−iω ·pr + e−iω ·pr 1− β

2
A0(y) eiω ·pr

=
1 + β

2
A0(y + rω) +

1− β
2

A0(y − rω) . (12.4)

Note that positive energy states are translated with the asymptotic velocity ω = cω,
and negative energy states with −cω. Combining the three strong limits yields

w-lim
p̄→∞

e−ip̄yS eip̄y =
(

exp
{
i

∫ ∞

0

drW (r)
})∗

1 exp
{
i

∫ −∞

0

drW (r)
}

= exp
{
− i
∫ ∞

−∞
drW (r)

}
.

12
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Now both e−ip̄yS eip̄y and the weak limit are unitary, thus strong convergence is
established. We employ the equation (12.4) for W (r) and replace −r by r in the
integral of the second term to obtain (12.3).

The exponent in (12.3) contains the X-ray transform of the electrostatic potential

X(y, ω) =

∫ ∞

−∞
dr A0(y + rω). X is continuous and vanishes for |y| → ∞ orthogonal

to ω, thus it can be obtained uniquely from its exponential, and the potential A0 is
recovered as explained in Section 10.

Lemma 12.2 Under the assumptions of Theorem 12.1 we have the limit

s-lim
p̄→∞

e−ip̄yJ−1Ω±eip̄y = exp
{
i

∫ ±∞

0

drW (r)
}
, (12.5)

where W (r) is given by (12.4).

To prove (12.5), we show first that it is sufficient to consider a finite time interval. We
employ the dense subspace D := {Ψ ∈ H0 | ψ̂ ∈ C∞

0 (Rν)}. For Ψ ∈ D, we have the
Bochner integral

e−ip̄y(J−1Ω±)eip̄y Ψ− e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ

= i

∫ ±∞

t

ds e−ip̄yJ−1eiH1s(H1J − JH0) e−iH0seip̄y Ψ , (12.6)

and the integrand is bounded by an integrable function h(s), which is independent of
p̄ ≥ p̄0. Setting

V := J−1H1J−H0 =

(
0 0

iA2
0(y) 1√

p2+m2
2A0(y)

)
, (12.7)

h(s) is obtained from the decomposition∥∥∥V e−iH0seip̄y Ψ
∥∥∥

≤
∥∥∥V F (|y| ≤ s

2
) e−iH0seip̄y Ψ

∥∥∥ +
∥∥∥V F (|y| ≥ s

2
) e−iH0seip̄y Ψ

∥∥∥
≤

∥∥∥V ∥∥∥ · ∥∥∥F (|y| ≤ s

2
) e−iH0seip̄y Ψ

∥∥∥ +
∥∥∥V F (|y| ≥ s

2
)
∥∥∥ · ∥∥∥Ψ∥∥∥ ,

where F (. . . ) is the multiplication with the characteristic function of the indicated

region. Now the first term is bounded by
const

(1 + s)2 from a non-propagation property

analogous to (3.10), and the second term is integrable by the decay properties of A0.
s

2
should be read as

cs

2
, where c is the velocity of light: For large p̄ the velocity support

of Ψp̄ is contained in |v| > c/2. Now the LHS of (12.6) is bounded by ±
±∞∫
t

ds h(s)

uniformly for p̄ ≥ p̄0, and by an ε/3-trick we may interchange the limits t→ ±∞ and
p̄→∞. Thus it is sufficient to show

lim
p̄→∞

e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ = exp
{
i

∫ t

0

drW (r)
}

Ψ . (12.8)

13
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We employ the Dyson-expansion

e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ

=
∞∑

n=0

in
∫ t

0

dtn

∫ t

tn

dtn−1 . . .

∫ t

t3

dt2

∫ t

t2

dt1 e−ip̄yV (tn)V (tn−1) . . . V (t2)V (t1) eip̄y Ψ

with V (t) := eiH0tV e−iH0t, where V is given by (12.7). The n-th term is bounded by
(|t| ‖V ‖L(H0))

n‖Ψ‖/n! independently of p̄, thus the limit p̄→∞ can be taken term-wise.
Now (12.8) follows from

lim
p̄→∞

∫ t

0

dtn

∫ t

tn

dtn−1 . . .

∫ t

t3

dt2

∫ t

t2

dt1 e−ip̄yV (tn)V (tn−1) . . . V (t2)V (t1) eip̄y Ψ

=

∫ t

0

dtn

∫ t

tn

dtn−1 . . .

∫ t

t3

dt2

∫ t

t2

dt1W (tn)W (tn−1) . . . W (t2)W (t1) Ψ

=
1

n!

∫ t

0

dtn

∫ t

0

dtn−1 . . .

∫ t

0

dt2

∫ t

0

dt1W (tn)W (tn−1) . . . W (t2)W (t1) Ψ

=
1

n!

(∫ t

0

drW (r)
)n

Ψ .

This is proved in [16], and here we shall sketch the proof for n = 1:

lim
p̄→∞

∫ t

0

dr e−ip̄yV (r) eip̄y Ψ =

∫ t

0

drW (r) Ψ . (12.9)

The integrand can be written as a product(
e−ip̄yeiH0reip̄y

)(
e−ip̄yV eip̄y

)(
e−ip̄ye−iH0reip̄y

)
Ψ with

e−ip̄ye±iH0reip̄y = e±iβ
√

(p + p̄)2 +m2 r. We have√
(p + p̄)2 +m2 − (p̄+ ω ·p)→ 0 for p̄→∞ and p ∈ Rν . Thus(

eiβ
√

(p + p̄)2 +m2 t − eiβ(p̄+ ω ·p)t
)

Ψ

= eiβ(p̄+ ω ·p)t
(
eiβ(

√
(p + p̄)2 +m2 − p̄− ω ·p)t − 1

)
Ψ→ 0 (12.10)

for all Ψ ∈ H0 (by the dominated convergence theorem applied to

∫
dνp | . . . ψ̂(p)|2).

This equation shows that in the high-energy limit, the spreading of a wave packet is
negligible compared to the translation. We have

e−ip̄yV eip̄y =

(
0 0

iA2
0

1√
(p+p̄)2+m2

2A0(y)

)
→
(

0 0
0 2A0(y)

)
, (12.11)

and thus the integral on the LHS of (12.9) is asymptotically∫ t

0

dr eiβ(p̄+ ω ·p)r
(

0 0
0 2A0

)
e−iβ(p̄+ ω ·p)r Ψ

=

∫ t

0

dr eiβ2p̄r eiβω ·pr
(
−A0 0

0 A0

)
e−iβω ·pr Ψ

+

∫ t

0

dr eiβω ·pr
(
A0 0
0 A0

)
e−iβω ·pr Ψ ,

14
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since the second matrix commutes with β, while the first is anti-commuting with β.
Now the Riemann-Lebesgue Lemma is valid for the Bochner integral, thus the integral
of the first term vanishes for p̄ → ∞, due to cancellations by rapid oscillations. The
second integral yields the RHS of (12.9).

This completes our sketch of the proof of Lemma 12.2, and thus of Theorem 12.1. It
can be generalized to include an electromagnetic field (A0, A): Then the Klein-Gordon
equation reads

ü+ i2A0 u̇+
[
(p−A)2 +m2−A2

0

]
u = 0 ,

and the operators and Hilbert spaces are defined in a similar way, where B2
1 is changed

to B2
1 = (p−A(x))2 +m2 − A0(x)2. We have

Theorem 12.3 Suppose that ν ∈ N, m > 0 and S is the scattering operator for a
Klein-Gordon particle of mass m in an electromagnetic field (A0, A), which is bounded
and decays integrably: For A ∈ {A0, A, div A} we have A ∈ L∞(Rν) and
∞∫
0

dR ‖χ(|x| > R)A(x)‖∞ < ∞. Moreover, we make the Kato-Rellich assumption

‖(B2
1 − B2

0)Ψ‖ ≤ a‖B2
0Ψ‖ with a < 1. Then the high-energy asymptotics of S are

given by

s-lim
p̄→∞

e−ip̄yS eip̄y = exp

{
−i
∫ ∞

−∞
dr

(
A0 −iω ·A
iω ·A A0

)
(y+rω)

}
, (12.12)

where p̄ = p̄ω with ω ∈ Sν−1. Denoting the restriction of S onto the subspace of
positive/negative energy by S±, we obtain

s-lim
p̄→∞

e−ip̄yS± eip̄y = exp

{
−i
∫ ∞

−∞
dr
(
A0∓ω·A

)
(y+rω)

}
. (12.13)

If ν ≥ 2 and A0, A are continuous, then A0 and B = rotA ∈ S ′ can be reconstructed
uniquely from S or S+ (we need an additional technical assumption on A, e.g. A ∈ L2

is sufficient).

This theorem was announced in [15], and a complete proof will be given in [16]. Note
that equation (12.13) is the same for the Dirac equation, which was treated in [15] by
a similar approach, where the decay assumptions on the potentials are the same, but
the Kato-Rellich condition looks less restrictive. The inverse scattering problem for
the Dirac equation was solved by stationary methods in [13] and [12] under stronger
assumptions on the potentials, and the geometrical, time-dependent method of [15]
was extended in [14] to cover time-dependent electromagnetic fields. In [1], the inverse
scattering problem for the Schrödinger equation with electric and magnetic potentials
was solved with the geometrical method.

Acoustic waves in an inhomogeneous medium are described by ü = c2ρ∇1
ρ
∇u. If

c(x) → 1 and ρ(x) → 1 for |x| → ∞ suitably, there is a scattering theory with the
corresponding free equation given by ü = ∆u. The high-energy asymptotics will be
described by the eikonal equation and are not easily obtained from our time-dependent
approach. If we consider the special case of c ≡ 1, thus ü = ∆u − 1

ρ
∇ρ · ∇u, the

high-energy limit is calculated in the same way as for the Klein-Gordon equation with

magnetic field, and
(

1
ρ
ω ·∇ρ

)
(y+ωr) = ∂

∂r
log ρ(y+ωr) yields e−ip̄yΩ±eip̄y → ρ1/2.
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Together with e−ip̄yg eip̄y → ρ−1, the limit e−ip̄yS eip̄y → 1 is obtained. See [16]
for details.

The books [17] and [19] give the background on mathematical scattering theory for
Schrödinger and Dirac operators. The paper [5] introduces the method in an elementary
way for non-specialists and gives many references.

The papers [1], [2], [5]-[9], and [15] (preprint versions) can be downloaded via our
homepages http://www.iram.rwth-aachen.de/∼enss and .../∼jung
or by FTP from ftp.iram.rwth-aachen.de/pub/papers/... or from mp arc.
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